People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Casar, Ziga
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Molecular modelling of cementitious materials: current progress and benefits
Abstract
<jats:p>Developing new sustainable concrete technology has become an urgent need, requiring faster and deeper insights into the fundamental mechanisms driving the cement hydration reactions. Molecular simulations have the potential to provide such understanding since the hydration reaction and the cement chemistry are particularly dominated by mechanisms at the atomic scale. In this letter, we review the application of two major approaches namely classical (including reactive) molecular dynamics simulations and density function theory calculations of cementitious materials. We give an overview of molecular simulations involving the major mineral and hydrate phases.</jats:p>