Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Silva, Wilson Ricardo Leal Da

  • Google
  • 2
  • 18
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Printable Cement-Based Materials: Fresh Properties Measurements and Control8citations
  • 2021Numerical simulation of multi-layer 3D concrete printing37citations

Places of action

Chart of shared publication
Schutter, Geert De
1 / 29 shared
Lowke, Dirk
1 / 15 shared
Sonebi, Mohammed
1 / 62 shared
Stephan, Dietmar
1 / 38 shared
Perrot, Arnaud
1 / 29 shared
Reiter, Lex
1 / 2 shared
Grünewald, Steffen
1 / 3 shared
Roussel, Nicolas
1 / 43 shared
Wolfs, Rob
1 / 2 shared
Flatt, Robert J.
1 / 9 shared
Pott, Ursula
1 / 9 shared
Wangler, Timothy
1 / 2 shared
Freund, Niklas
1 / 6 shared
Bos, Freek
1 / 10 shared
Spangenberg, Jon
1 / 76 shared
Mollah, Md. Tusher
1 / 17 shared
Stang, Henrik
1 / 70 shared
Andersen, Thomas Juul
1 / 2 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Schutter, Geert De
  • Lowke, Dirk
  • Sonebi, Mohammed
  • Stephan, Dietmar
  • Perrot, Arnaud
  • Reiter, Lex
  • Grünewald, Steffen
  • Roussel, Nicolas
  • Wolfs, Rob
  • Flatt, Robert J.
  • Pott, Ursula
  • Wangler, Timothy
  • Freund, Niklas
  • Bos, Freek
  • Spangenberg, Jon
  • Mollah, Md. Tusher
  • Stang, Henrik
  • Andersen, Thomas Juul
OrganizationsLocationPeople

article

Numerical simulation of multi-layer 3D concrete printing

  • Spangenberg, Jon
  • Mollah, Md. Tusher
  • Stang, Henrik
  • Silva, Wilson Ricardo Leal Da
  • Andersen, Thomas Juul
Abstract

This paper presents a computational fluid dynamics model fit for multi-layer 3D Concrete Printing. The numerical model utilizes an elasto-visco-plastic constitutive model to mimic the flow behaviour of the cementitious material. To validate the model, simulation data is compared to experimental data from 3D printed walls. The obtained results show that the numerical model can reproduce the experimental results with high accuracy and quantify the extrusion load imposed upon the layers. Such load is found to exceed the material’s yields stress in certain regions of previously printed layers, leading to layer deformation/flow. The developed and validated numerical model can assist in identifying optimal printing strategies, reducing the number of costly experimental print failures and human-process interaction. By doing so, the findings of this paper helps 3D Concrete Printing move a step closer to a truly digital fabrication process.

Topics
  • impedance spectroscopy
  • polymer
  • simulation
  • extrusion