People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Trivedi, Mahendra Kumar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (61/61 displayed)
- 2021Evaluation of Physicochemical, Spectral and Thermal Properties of Energy of Consciousness Healing Treated Iron Sulphate
- 2019Evaluation of Physicochemical and Thermal Properties of the Consciousness Energy Healing Treated Tellurium
- 2019Evaluation of the physicochemical, thermal and behavioural properties of consciousness energy healing treated iron (II) sulphate
- 2019Characterization of the biofield energy treated aluminium using PSA, PXRD, and TGA/DTG analytical techniques
- 2018Evaluation of the Physicochemical and Thermal Properties of Antimony: Influence of the Energy of Consciousness Healing Treatment
- 2018Assessment of the Influence of Biofield Energy Treatment on the Physicochemical and Thermal Properties of Lead Using PXRD, PSA, and DSC
- 2018Evaluation of Biofield Treatment on Physical and Structural Properties of Bronze Powder
- 2018Evaluation of the Physicochemical and Thermal Properties of Consciousness Energy Healing Treated Lead Using PXRD, PSA, and DSC Analysiscitations
- 2018Evaluation of the Physicochemical and Thermal Properties of Chromium Trioxide (CrO3): Impact of Consciousness Energy Healing Treatmentcitations
- 2018Spectroscopic and Calorimetric Evaluation of the Consciousness Energy Healing Treated Lead
- 2016Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Treated Ortho-Toluic Acid
- 2015Physicochemical Characterization of Biofield Energy Treated Hi VegTM Acid Hydrolysate
- 2015Physicochemical and Spectroscopic Characterization of p-Chlorobenzaldehyde: An Impact of Biofield Energy Treatment
- 2015Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrilecitations
- 2015Effect of Biofield Treatment on Structural and Morphological Properties of Silicon Carbide
- 2015Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powder
- 2015Characterization of Physicochemical and Spectroscopic Properties of Biofield Energy Treated Bio Peptone
- 2015Thermal and physical properties of biofield treated bile salt and proteose peptonecitations
- 2015Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powdercitations
- 2015Physicochemical and Spectroscopic Characterization of Yeast Extract Powder After the Biofield Energy Treatmentcitations
- 2015Physical, Thermal and Spectroscopic Characterization of Biofield Treated p-Chloro-m-cresolcitations
- 2015Characterization of Physical and Structural Properties of Brass Powder After Biofield Treatment
- 2015Characterization of Physical and Structural Properties of Brass Powder After Biofield Treatmentcitations
- 2015Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatmentcitations
- 2015Effect of Biofield Treatment on Physical, Thermal, and Spectral Properties of SFRE 199-1 Mammalian Cell Culture Medium
- 2015Experimental Investigation on Physical, Thermal and Spectroscopic Properties of 2-Chlorobenzonitrile: Impact of Biofield Treatmentcitations
- 2015Effect of Biofield Treatment on the Physical and Thermal Characteristics of Aluminium Powderscitations
- 2015Evaluation of Biofield Treatment on Physical and Structural Properties of Bronze Powder
- 2015Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazolecitations
- 2015Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Energy Treated P-Phenylenediamine and p-Toluidinecitations
- 2015Influence of biofield treatment on physicochemical properties of hydroxyethyl cellulose and hydroxypropyl cellulosecitations
- 2015Evaluation of Physical, Thermal and Spectral Parameters of Biofield Energy Treated Methylsulfonylmethanecitations
- 2015Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Methyl-2-Naphthyl Ethercitations
- 2015Physicochemical and Spectroscopic Properties of Biofield Energy Treated Protose
- 2015Characterization of Thermal and Physical properties of Biofield Treated Acrylamide and 2-Chloroacetamidecitations
- 2015The Potential Impact of Biofield Treatment on Physical, Structural and Mechanical Properties of Stainless Steel Powdercitations
- 2015Influence of Biofield Treatment on Physical, Structural and Spectral Properties of Boron Nitridecitations
- 2015Bio-field treatment: An effective strategy to improve the quality of beef extract and meat infusion powdercitations
- 2015Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenylcitations
- 2015Influence of Biofield Treatment on Physical and Structural Characteristics of Barium Oxide and Zinc Sulfidecitations
- 2015Structural and physical properties of biofield treated thymol and mentholcitations
- 2015Characterization of Physical, Thermal and Spectral Properties of Biofield Treated o-Aminophenolcitations
- 2015Physicochemical and Spectroscopic Characterization of Biofield Energy Treated p-Anisidinecitations
- 2015Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Murashige and Skoog Plant Cell Culture Mediacitations
- 2015Physicochemical and Spectral Characterization of Biofield Energy Treated 4-Methylbenzoic Acidcitations
- 2015Physicochemical Characterization of Biofield Energy Treated Calcium Carbonate Powdercitations
- 2015Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichlorobenzenecitations
- 2015Biofield Treatment: An Effective Strategy for Modulating the Physical and Thermal Properties of O-Nitrophenol, M-Nitrophenol and P-Tertiary Butyl Phenol
- 2015Impact of Biofield Treatment on Chemical and Thermal Properties of Cellulose and Cellulose Acetatecitations
- 2015Physicochemical and Atomic Characterization of Silver Powder after Biofield Treatmentcitations
- 2015Characterization of Physicochemical and Thermal Properties of Chitosan And Sodium Alginate after Biofield Treatmentcitations
- 2015Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Impact of Biofield Treatmentcitations
- 2015Effect of biofield treatment on structural and morphological properties of silicon carbidecitations
- 2015Physical, Thermal and Spectral Properties of Biofield Energy Treated 2,4-Dihydroxybenzophenone
- 2015Characterization of Physicochemical and Thermal Properties of Biofield Treated Ethyl Cellulose and Methyl Cellulose
- 2015Physical, Atomic and Thermal Properties of Biofield Treated Lithium Powdercitations
- 2015Physical and Structural Characterization of Biofield Energy Treated Carbazolecitations
- 2015Characterization of Physical and Structural Properties of Aluminium Carbide Powder: Impact of Biofield Treatmentcitations
- 2015Physicochemical Evaluation of Biofield Treated Peptone And Malmgren Modified Terrestrial Orchid Mediumcitations
- 2013Effect of Bio Field Treatment on the Physical and Thermal Characteristics of Vanadium Pentoxide Powderscitations
- 2013Effect of Bio Field Treatment on the Physical and Thermal Characteristics of Silicon, Tin and Lead Powderscitations
Places of action
Organizations | Location | People |
---|
article
Physicochemical and Spectroscopic Characterization of p-Chlorobenzaldehyde: An Impact of Biofield Energy Treatment
Abstract
"p-Chlorobenzaldehyde (p-CBA) is used as an important chemical intermediate for the preparation of pharmaceuticals, agricultural chemicals, dyestuffs, optical brighteners, and metal finishing products. The study aimed to evaluate the effect of biofield energy treatment on the physicochemical and spectroscopic properties of p-CBA. The study was accomplished in two groups i.e. control and treated. The control group was remained as untreated, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. Finally, both the samples (control and treated) were evaluated using various analytical techniques. The surface area analysis showed a substantial increase in the surface area by 23.06% after biofield treatment with respect to the control sample. The XRD analysis showed the crystalline nature of both control and treated samples. The X-ray diffractogram showed the significant alteration in the peak intensity in treated sample as compared to the control. The XRD analysis showed the slight increase (2.31%) in the crystallite size of treated sample as compared to the control. The TGA analysis exhibited the decrease (10%) in onset temperature of thermal degradation form 140°C (control) to 126°C in treated sample. The Tmax (maximum thermal degradation temperature) was slightly decreased (2.14%) from 157.09°C (control) to 153.73°C in treated sample of p-CBA. This decrease in Tmax was possibly due to early phase of vaporization in treated sample as compared to the control. The FT-IR spectrum of treated p-CBA showed the increase in wavenumber of C=C stretching as compared to the control. The UV spectroscopic study showed the similar pattern of wavelength in control and treated samples.Altogether, the surface area, XRD, TGA-DTG and FT-IR analysis suggest that Mr. Trivedi’s biofield energy treatment has the impact to alter the physicochemical properties of p-CBA. This treated p-CBA could be utilized as a better chemical intermediate than the control p-CBA for the synthesis of pharmaceutical drugs and organic chemicals."