Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nani, Lorenzo

  • Google
  • 4
  • 9
  • 15

University of Bergamo

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Preliminary assessment of material extrusion (MEX) for medical applications: The effect of hatch anglecitations
  • 2024Corrosion behavior assessment of an Al-Cu alloy manufactured via laser powder bed fusion13citations
  • 2024Effect of different Additive Manufacturing techniques on the microstructure and corrosion resistance of Ti-6Al-4V alloycitations
  • 2023On the selective corrosion mechanism of LPBF-produced AlSi10Mg: Potentiostatic polarization effects2citations

Places of action

Chart of shared publication
Durso, Gianluca
1 / 25 shared
Quarto, Mariangela
1 / 16 shared
Sala, Francesca
1 / 1 shared
Lorenzi, Sergio
3 / 71 shared
Cabrini, Marina
3 / 72 shared
Carrozza, Alessandro
1 / 11 shared
Pastore, Tommaso
3 / 60 shared
Persico, Tommaso
1 / 1 shared
Gritti, Luca
1 / 4 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Durso, Gianluca
  • Quarto, Mariangela
  • Sala, Francesca
  • Lorenzi, Sergio
  • Cabrini, Marina
  • Carrozza, Alessandro
  • Pastore, Tommaso
  • Persico, Tommaso
  • Gritti, Luca
OrganizationsLocationPeople

conferencepaper

Preliminary assessment of material extrusion (MEX) for medical applications: The effect of hatch angle

  • Durso, Gianluca
  • Nani, Lorenzo
  • Quarto, Mariangela
  • Sala, Francesca
Abstract

Material extrusion (MEX) is one of the most widely used Additive Manufacturing (AM) technologies owing to its simplicity and accessible cost. The technique is based on the principle of extrusion of thermoplastic material, layer-by-layer, on a building platform through multiple head nozzles. Metal filled filaments, in combination with debinding and sintering cycles, may innovate and transform the traditional functioning of the MEX technique into a cost-effective alternative for the conventional metallic AM processes. In the present document, the optimal printing conditions characterizing LPBF technology were replicated on MEX technology, with the aim of assessing the effects of the printing parameter hatch angle over the material properties and, at the same time, providing a better understanding of the production of medical metal parts via MEX. Indeed, in this particular context, the use of Powder Bed Fusion (PBF) and Directed Energy Deposition (DED) prevails, requiring MEX-based technique extensive research for its applicability. The influence of a specific AM process parameter, the hatch angle, was assessed following a single factor Design of Experiment (DOE), varying over two levels: the optimal Laser Powder Bed Fusion (LPBF) scanning strategy (67°k) and the most common MEX deposition strategy (±45°). Specimens were manufactured, using MEX technology (Ultimaker S5) and AISI 316L filament (BASF Ultrafuse 316L) and tested. Results of the defect analysis, including closed and open porosity, and mechanical properties were collected and statistically compared to determine any difference in the two-deposition strategies. Furthermore, in the analysis, LPBF key characteristics are reported as benchmark values.

Topics
  • Deposition
  • impedance spectroscopy
  • experiment
  • extrusion
  • selective laser melting
  • defect
  • porosity
  • thermoplastic
  • directed energy deposition
  • sintering
  • material extrusion