People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Araujo, Anna Carla
Institut National des Sciences Appliquées de Toulouse
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Axial drilling investigations and the potential of orbital techniques for enhanced hole quality in orthopedicscitations
- 2024Axial drilling investigations and the potential of orbital techniques for enhanced hole quality in orthopedicscitations
- 2024Experimental work on friction riveting process of Ti6Al4V in a CNC machine
- 2023Material identification in helical milling for smart drilling applications
- 2023Drilling of multi-material stacks for the assembly of aeronautical structures: from the characterization of the cutting mechanisms to the development of Smart drilling techniques
- 2023Data maps for material identification in helical milling by spindle power monitoring
- 2023COLLABORATIVE PROJECT AS A DIDACTIC PLATFORM OF VIRTUAL MOBILITY FOR ADDITIVE MANUFACTURING COURSE
- 2020Investigation on PCD cutting edge geometry for Ti6Al4V high-feed millingcitations
- 2019Micromilling of Equal Channel Angular Pressing Titanium
- 2019Micromilling of Equal Channel Angular Pressing Titanium
- 2019CUTTING FORCES IN HIGH FEED MILLING
- 2019Experimental Comparison of Micromilling Pure Titanium and Ti-6Al-4Vcitations
- 2018Investigation of tool deflection during milling of thread in Cr-Co dental implantcitations
- 2018COMPARISON OF THE POROSITY OF SCAFFOLDS MANUFACTURED BY TWO ADDITIVE MANUFACTURING TECHNOLOGIES: SLA AND FDM
- 2018Investigation of tool deflection during milling of thread in Cr-Co dental implant ; Science Arts & Métiers (SAM)citations
- 2018Experimental Comparison of Micromilling Pure Titanium and Ti-6Al-4V
- 2017Contraction analysis in stereolithography varying position and orientation on the printing platform
- 2017Modeling Thread Milling Forces in Mini-hole in Dental Metallic Materialscitations
- 2017AN EXPERIMENTAL COMPARISON REGARDING BURR FORMATION ON MICROMILLING OF TITANIUM ALLOY TI-6AL-4V USING DIFFERENT EXPERIMENTAL SETUPS
- 2016Study of residual stresses, machining forces and surface quality generated in milling of maraging steel
- 2015A STUDY OF SPECIFIC CUTTING FORCE IN MICROMILLING OF SUPERDUPLEX STAINLESS STEEL UNS S 32750
- 2014Experimental Analysis of Micromilling Cutting Forces on Super Duplex Stainless Steel ICOMM 2014 No
- 2014INFLUENCE OF MICROMILLING ON THE SURFACE INTEGRITY OF SUPER DUPLEX STAINLESS STEEL*
- 2014INFLUENCE OF MICROMILLING ON THE SURFACE INTEGRITY OF SUPER DUPLEX STAINLESS STEEL*
- 2013Analytical and experimental investigations on thread milling forces in titanium alloy
- 2013A STUDY OF THE INFLUENCE OF THE WIDTH OF CUT ON MICRO MILLING ALUMINUM ALLOY
Places of action
Organizations | Location | People |
---|
document
Axial drilling investigations and the potential of orbital techniques for enhanced hole quality in orthopedics
Abstract
recision in surgical bone drilling is essential for restoring bones mobility and function. However, the intricate nature and fiber-reinforced composite structure of bones inherently pose drilling-induced mechanical damage to the bone surface, affecting the primary stability necessary for implant anchorage and therefore leading to implant failure. The critical need for enhanced hole quality and damage reduction has spurred investigations into the optimal drilling parameters, novel drilling tools and alternative machining techniques. This study rigorously investigates the effect of the cutting speed and feed rate during axial drilling employing a center drill. It extends toward a comprehensive analysis of forces, temperature and mechanical damage, with a particular emphasis on delamination assessment. Then, the optimal parameters are established using the Tool-Material Couple (COM) optimization strategy. Subsequently, a novel approach of orbital drilling in bones is introduced for hole quality enhancement when compared to the conventional technique. This investigation serves as a foundational step for a more comprehensive study that ventures into the innovative application of orbital drilling in orthopedics.