People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohnfeld, Norman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Numerical investigation of rotational friction welding for C22.8 - 41Cr4 joints using a substitute model
- 2023Characterisation and Modelling of Intermetallic Phase Growth of Aluminium and Titanium in a Tailored Forming Process Chain
- 2022Characterization of the Interface between Aluminum and Iron in Co-Extruded Semi-Finished Productscitations
- 2022Functionality Investigations of Dry-Lubricated Molybdenum Trioxide Cylindrical Roller Thrust Bearingscitations
- 2020Characterization and modeling of intermetallic phase formation during the joining of aluminum and steel in analogy to co-extrusioncitations
- 2020Lateral angular co-extrusioncitations
- 2020Characterization of molybdenum based coatings on 100Cr6 bearing steel surfacescitations
- 2019Micro- and nanotribological characterization of molybdenum oxide based coatings on 100CR6 bearing steel surfacescitations
- 2019Numerical modeling of the development of intermetallic layers between aluminium and steel during co-extrusioncitations
Places of action
Organizations | Location | People |
---|
document
Numerical investigation of rotational friction welding for C22.8 - 41Cr4 joints using a substitute model
Abstract
<jats:p>Abstract. Rotational friction welding (RFW) is a solid-state joining process that enables the joining of similar and dissimilar materials such as metal-metal or metal-ceramic joints. Due to its high application flexibility, this process has great potential for the production of hybrid components. In order to be able to realise this potential for the production of hybrid components, the development of an improved process design is required. Due to the complexity of the process, the Finite Element Method (FEM) can be used to solve complex problems and is therefore an established tool for the design of joining processes. This work focuses on the development of an FE model to represent the RFW process of C22.8 and 41Cr4 joints. The material data required for the numerical representation of the RFW were obtained from isothermal cylinder compression tests. The frictional heat which is generated during RFW is calculated using a substitute model, which mainly depends on the Y-factor. The Y-factor indicates what percentage of the calculated frictional energy is introduced into the process. The Y-factor was determined and then verified using experimental data. A general validity of the determined Y-factors with changed process parameters could not be achieved. </jats:p>