Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sander, Sebastian

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Improving the flow forming process by a novel closed-loop controlcitations

Places of action

Chart of shared publication
Vasquez, Julian Rozo
1 / 2 shared
Arian, Bahman
1 / 3 shared
Kersting, Lukas
1 / 6 shared
Walther, Frank
1 / 70 shared
Trächtler, Ansgar
1 / 6 shared
Homberg, Werner
1 / 10 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Vasquez, Julian Rozo
  • Arian, Bahman
  • Kersting, Lukas
  • Walther, Frank
  • Trächtler, Ansgar
  • Homberg, Werner
OrganizationsLocationPeople

document

Improving the flow forming process by a novel closed-loop control

  • Vasquez, Julian Rozo
  • Arian, Bahman
  • Sander, Sebastian
  • Kersting, Lukas
  • Walther, Frank
  • Trächtler, Ansgar
  • Homberg, Werner
Abstract

<jats:p>Abstract. The incremental flow forming process is currently enhanced in research context by special closed-loop property control concepts to increase the productivity and to control the product properties making invisible property structures like a magnetic barcode possible. However, it is preferred to establish property control concepts on single roller machines instead of conventional machines with three roller actuation due to the better machine accessibility. For those single roller machines, rather poor surface qualities of flow formed workpieces were observed in the past especially for hydraulic actuators. Thus, a new actuator closed-loop position control concept is developed in this paper using model-based control design methods and taking the flow forming forces as a load into account. The novel closed-loop control is validated during workpiece production at the actual single roller flow forming machine. An analysis of the manufactured workpieces show that the surface quality is significantly enhanced by the new control to a roughness level almost similar to conventional three roller flow forming. Thus, a sincere added value to the flow forming process is offered by the novel actuator closed-loop position control. </jats:p>

Topics
  • impedance spectroscopy
  • surface
  • forming