Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Genovesi, Annalisa

  • Google
  • 2
  • 6
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Role of wood flour on processability of marine biodegradable poly (3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (<scp>PHBH</scp>)/poly(butylene succinate‐co‐butylene adipate) (<scp>PBSA</scp>) blends in cast extrusion and thermoforming of take‐away food containers4citations
  • 2023PET foaming: development of a new class of rheological additives for improved processabilitycitations

Places of action

Chart of shared publication
Barletta, Massimiliano
2 / 37 shared
Aversa, Clizia
1 / 1 shared
Lignola, Chiara
1 / 1 shared
Cappiello, Giulia
1 / 1 shared
Gisario, Annamaria
1 / 3 shared
Aversa, C.
1 / 6 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Barletta, Massimiliano
  • Aversa, Clizia
  • Lignola, Chiara
  • Cappiello, Giulia
  • Gisario, Annamaria
  • Aversa, C.
OrganizationsLocationPeople

document

PET foaming: development of a new class of rheological additives for improved processability

  • Barletta, Massimiliano
  • Genovesi, Annalisa
  • Gisario, Annamaria
  • Aversa, C.
Abstract

<jats:p>Abstract. Polymer foaming is a process broadly used for manufacturing light weight packaging solutions. Polystyrene (PS) is the most widespread material for this application, as it combines easy processability, low cost and high performance of the resulting items. However, foamed PS is difficult to recycle and highly polluting for the oceans and aquatic environment. Polyethylene terephthalate (PET) is, instead, commonly recycled and R-PET is broadly used for several industrial applications. Yet, PET quickly loses viscosity during the foaming process, due to thermo-hydrolytic and oxidative degradation thus causing poor foaming. In this paper, an innovative combination of chain extenders, anti-oxidants and nucleating agents to modify PET rheology is studied. The additives were experimented both in off-line and in-line apparatus. The experimental results show PET rheology can be customized by appropriately modulating the content of the different additives, thus making PET suitable for foaming process of high-quality items. </jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • viscosity