People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Uhe, Johanna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Numerical investigation of rotational friction welding for C22.8 - 41Cr4 joints using a substitute model
- 2024Prevention of scaling by means of recycled process waste gases
- 2023KNN-Entwicklung in der Halbwarmumformung/ANN development in semi-hot forming
- 2023Investigation of the joining zone formation of impact extruded hybrid components by varied forming sequence and partial cooling
- 2023Investigation of the joining zone formation of impact extruded hybrid components by varied forming sequence and partial coolingcitations
- 2023Modelling failure of joining zones during forming of hybrid parts
- 2022Comparison of the Joining Zone Development of Hybrid Semi-Finished Products after Different Extrusion Processes
- 2022Investigations on Additively Manufactured Stainless Bearingscitations
- 2022Tailored Forming of hybrid bulk metal components
- 2022Tailored Forming: Drucküberlagertes Warmfließpressen
- 2021Joining zone evaluation of hybrid semi-finished products after backward can extrusion
- 2021Numerical evaluation of forging process designs of a hybrid co-extruded demonstrator consisting of steel and aluminium.
- 2021Influence of degree of deformation on welding pore reduction in high-carbon steelscitations
- 2021Process chain for the manufacture of hybrid bearing bushingscitations
- 2021Challenges in the Forging of Steel-Aluminum Bearing Bushings
- 2021Contact Geometry Modification of Friction-Welded Semi-Finished Products to Improve the Bonding of Hybrid Componentscitations
- 2020Characterization and modeling of intermetallic phase formation during the joining of aluminum and steel in analogy to co-extrusion
- 2020Characterization and modeling of intermetallic phase formation during the joining of aluminum and steel in analogy to co-extrusioncitations
- 2020Numerical investigations regarding a novel process chain for the production of a hybrid bearing bushingcitations
- 2020Lateral angular co-extrusioncitations
- 2020Lateral angular co-extrusion: Geometrical and mechanical properties of compound profiles
- 2019Numerical modeling of the development of intermetallic layers between aluminium and steel during co-extrusioncitations
- 2017Mechanical properties of co-extruded aluminium-steel compounds
Places of action
Organizations | Location | People |
---|
document
Investigation of the joining zone formation of impact extruded hybrid components by varied forming sequence and partial cooling
Abstract
<jats:p>Abstract. Hybrid material concepts enable the combination of beneficial properties of different materials to extend the limited potential of monolithic components. When it comes to steel and aluminium, a wear-resistant and a lightweight metal are combined to produce a weight-reduced high-performance component with load-adapted areas. A method to create hybrid gear shafts is a novel approach called Tailored Forming. The process chain consists of joining e. g. by friction welding and subsequent impact extrusion under elevated temperature. Before forming, an axial temperature gradient is set in the serial arranged semi-finished products to adjust the different yield stresses of the dissimilar materials through induction heating of the steel part. The subsequent forming is intended to positively influence the joining zone thermo-mechanically and geometrically. However, prior work indicated a limitation of the influence on the joining zone in forward rod extrusion. Therefore, approaches are being researched that enable a stronger formation of the joining zone geometry to influence the resulting bond qualities through surface enlargement. A forward rod extrusion process of friction welded hybrid semi-finished products made of 20MnCr5 (AISI 5120H) combined with EN AW-6082 (AA6082) was carried out experimentally. Complementary to prior investigations, in which mainly the aluminium section was reduced through the die angle followed by the steel, the forming sequence of the materials was reversed to increase the joining zone surface with variation of the forming path. Additionally, a cooling of the aluminium side was realized through an immersion cooling to adjust maximum temperature gradients and further equalize the different yield stresses. Hardness tests, metallographic and SEM images of cross-sections were taken to evaluate the bond quality with regard to the temperature influence, joining zone formation, occurring defects and the resulting intermetallic compound (IMC). Impact extrusion with initially steel formed followed by aluminium resulted in a spherical formation of the joining zone and consequently in greater surface area, but also lead to partial defects in the IMC. The partial cooling of the aluminium allowed higher temperature gradients to be set, thus reducing defects through improved material flow in the joining zone. </jats:p>