Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schäfer, Bastian

  • Google
  • 5
  • 10
  • 7

Karlsruhe Institute of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Composite forming simulation for non-crimp fabrics based on generalized continuum approaches – AMECOMP : Abschlussbericht / Final project report (DFG 431354059 / ANR-19-CE06-0031)citations
  • 2024Composite forming simulation for non-crimp fabrics based on generalized continuum approaches – AMECOMP : Abschlussbericht / Final project report (DFG 431354059 / ANR-19-CE06-0031)citations
  • 2024Influence of viscosity, binder activation, and loading rate on the membrane response of an infiltrated UD-NCFcitations
  • 2023Investigation of the compaction behavior of uni- and bidirectional non-crimp fabrics2citations
  • 2023Membrane behavior of uni- and bidirectional non-crimp fabrics in off-axis-tension tests5citations

Places of action

Chart of shared publication
Naouar, Naim
3 / 4 shared
Zheng, Ruochen
4 / 4 shared
Colmars, Julien
1 / 5 shared
Kärger, Luise
5 / 86 shared
Platzer, Auriane
1 / 1 shared
Boisse, Philippe
1 / 29 shared
Miranda Portela, Renan
1 / 1 shared
Montesano, John
1 / 6 shared
Rocha De Faria, Alfredo
1 / 1 shared
Philippe, Boisse
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Naouar, Naim
  • Zheng, Ruochen
  • Colmars, Julien
  • Kärger, Luise
  • Platzer, Auriane
  • Boisse, Philippe
  • Miranda Portela, Renan
  • Montesano, John
  • Rocha De Faria, Alfredo
  • Philippe, Boisse
OrganizationsLocationPeople

document

Investigation of the compaction behavior of uni- and bidirectional non-crimp fabrics

  • Schäfer, Bastian
  • Philippe, Boisse
  • Zheng, Ruochen
  • Kärger, Luise
Abstract

The through-thickness compaction behavior of engineering textiles significantly influences the resulting component properties during liquid composite molding processes (LCM). It determines the final fiber volume content and thus the necessary press force, the permeability as well as the final mechanical properties. In the present work, the behavior of a uni- and bidirectional carbon fiber non-crimp fabric (UD- & Biax-NCF) with the same fiber type and areal density of fibers in the respective main reinforcement directions is tested in a punch-to-plate setup. Thereby, the influence of the relative fiber orientation at the interfaces of a layup as well as the number of plies is investigated. A combined influence of roving nesting and superposition of stitching patterns is observed. This results in a common influence of decreasing resistance to compaction for higher numbers of layers, while the relative orientation of the interfaces in a layup is only significant for the Biax-NCF.

Topics
  • density
  • impedance spectroscopy
  • Carbon
  • composite
  • permeability