Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vijayakumar, Sekar

  • Google
  • 1
  • 2
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Perspectives toward the Development of Advanced Materials Based on Bacterial Polysaccharides5citations

Places of action

Chart of shared publication
Marican, Adolfo
1 / 1 shared
Rafael, Diana
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Marican, Adolfo
  • Rafael, Diana
OrganizationsLocationPeople

article

Perspectives toward the Development of Advanced Materials Based on Bacterial Polysaccharides

  • Marican, Adolfo
  • Rafael, Diana
  • Vijayakumar, Sekar
Abstract

<jats:sec> <jats:title>Abstract:</jats:title> <jats:p>Bacteria and their enzymatic machinery, also called bacterial cell factories, produce a diverse variety of biopolymers, such as polynucleotides, polypeptides and polysaccharides, with different and fundamental cellular functions. Polysaccharides are the most widely used biopolymers, especially in biotechnology. This type of biopolymer, thanks to its physical and chemical properties, can be used to create a wide range of advanced bio-based materials, hybrid materials and nanocomposites for a variety of exciting biomedical applications. In contrast to synthetic polymers, bacterial polysaccharides have several advantages, such as biocompatibility, biodegradability, low immunogenicity, and non-toxicity, among others. On the other hand, the main advantage of bacterial polysaccharides compared to polymers extracted from other natural sources is that their physicochemical properties, such as purity, porosity, and malleability, among others, can be adapted to a specific application with the use of biotechnological tools and/or chemical modifications. Another great reason for using bacterial polysaccharides is due to the possibility of developing advanced materials from them using bacterial factories that can metabolize raw materials (recycling of industrial and agricultural wastes) that are readily available and in large quantities. Moreover, through this strategy, it is possible to curb environmental pollution. In this article, we project the desire to move towards large-scale production of bacterial polysaccharides taking into account the benefits, weaknesses and prospects in the near future for the development of advanced biological materials for medical and pharmaceutical purposes.</jats:p> </jats:sec>

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • porosity
  • biological material
  • toxicity
  • size-exclusion chromatography
  • biocompatibility