Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Islam, Md Ariful

  • Google
  • 1
  • 10
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Nanomedicine: A New Frontier in Alzheimer’s Disease Drug Targeting3citations

Places of action

Chart of shared publication
Pramanik, Pallab
1 / 1 shared
Kalita, Parimita
1 / 1 shared
Das, Aparoop
1 / 1 shared
Pathak, Manash Pratim
1 / 1 shared
Ahmad, Mohammad Zaki
1 / 7 shared
Sahariah, Jon Jyoti
1 / 1 shared
Pathak, Kalyani
1 / 1 shared
Saikia, Riya
1 / 1 shared
Abdel-Wahab, Basel A.
1 / 1 shared
Tayeng, Dubom
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Pramanik, Pallab
  • Kalita, Parimita
  • Das, Aparoop
  • Pathak, Manash Pratim
  • Ahmad, Mohammad Zaki
  • Sahariah, Jon Jyoti
  • Pathak, Kalyani
  • Saikia, Riya
  • Abdel-Wahab, Basel A.
  • Tayeng, Dubom
OrganizationsLocationPeople

article

Nanomedicine: A New Frontier in Alzheimer’s Disease Drug Targeting

  • Pramanik, Pallab
  • Kalita, Parimita
  • Das, Aparoop
  • Pathak, Manash Pratim
  • Ahmad, Mohammad Zaki
  • Sahariah, Jon Jyoti
  • Pathak, Kalyani
  • Saikia, Riya
  • Abdel-Wahab, Basel A.
  • Tayeng, Dubom
  • Islam, Md Ariful
Abstract

<jats:sec> <jats:title>Abstract:</jats:title> <jats:p>Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting elderly individuals, characterized by progressive cognitive decline leading to dementia. This review examines the challenges posed by anatomical and biochemical barriers such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and p-glycoproteins in delivering effective therapeutic agents to the central nervous system (CNS) for AD treatment. This article outlines the fundamental role of acetylcholinesterase inhibitors (AChEIs) and NMDA(N-Methyl-D-Aspartate) receptor antagonists in conventional AD therapy and highlights their limitations in terms of brain-specific delivery. It delves into the intricacies of BBB and pglycoprotein-mediated efflux mechanisms that impede drug transport to the CNS. The review further discusses cutting-edge nanomedicine-based strategies, detailing their composition and mechanisms that enable effective bypassing of BBB and enhancing drug accumulation in brain tissues. Conventional therapies, namely AChEIs and NMDA receptor antagonists, have shown limited efficacy and are hindered by suboptimal brain penetration. The advent of nanotechnology-driven therapeutic delivery systems offers promising strategies to enhance CNS targeting and bioavailability, thereby addressing the shortcomings of conventional treatments. Various nanomedicines, encompassing polymeric and metallic nanoparticles (MNPs), solid lipid nanoparticles (SLNs), liposomes, micelles, dendrimers, nanoemulsions, and carbon nanotubes, have been investigated for their potential in delivering anti-AD agents like AChEIs, polyphenols, curcumin, and resveratrol. These nanocarriers exhibit the ability to traverse the BBB and deliver therapeutic payloads to the brain, thereby holding immense potential for effective AD treatment and early diagnostic approaches. Notably, nanocarriers loaded with AChEIs have shown promising results in preclinical studies, exhibiting improved therapeutic efficacy and sustained release profiles. This review underscores the urgency of innovative drug delivery approaches to overcome barriers in AD therapy. Nanomedicine-based solutions offer a promising avenue for achieving effective CNS targeting, enabling enhanced bioavailability and sustained therapeutic effects. As ongoing research continues to elucidate the complexities of CNS drug delivery, these advancements hold great potential for revolutionizing AD treatment and diagnosis.</jats:p> </jats:sec>

Topics
  • nanoparticle
  • impedance spectroscopy
  • Carbon
  • nanotube
  • size-exclusion chromatography
  • dendrimer