People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johnson, Bradley R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2019Solid Secondary Waste Immobilization in Cementitious Waste Forms at the Hanford Site - 19081
- 2014Preliminary Phase Field Computational Model Development
- 2013Sublimation-Condensation of Multiscale Tellurium Structurescitations
- 2009Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report
- 2009DC Ionization Conductivity of Amorphous Semiconductors for Radiation Detection Applicationscitations
- 2008ASGRAD FY07 Annual Report
- 2008FY 2008 Infrared Photonics Final Report
- 2007Engineered SMR catalysts based on hydrothermally stable, porous, ceramic supports for microchannel reactorscitations
- 2007FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)
- 2007Differential etching of chalcogenides for infrared photonic waveguide structurescitations
- 2006Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography
- 2006Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system
- 2005Microstructural and Microchemical Characterization of Primary-Side Cracks in an Alloy 600 Nozzle Head Penetration and its Alloy 182 J-Weld from the Davis-Besse Reactor Vessel
- 2005FY 2005 Miniature Spherical Retroreflectors Final Report
- 2005FY 2005 Infrared Photonics Final Report
- 2004Laser Writing in Arsenic Trisulfide Glass
- 2004FY 2004 Infrared Photonics Final Report
- 2004Chalcogenide glasses and structures for quantum sensing
Places of action
Organizations | Location | People |
---|
report
Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report
Abstract
A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.