People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Riley, Brian J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Insights on the structure and properties of sodium iron phosphate glasses from molecular dynamics simulationscitations
- 2018Final report: Understanding influence of thermal history and glass chemistry on kinetics of phase separation and crystallization in borosilicate glass-ceramic waste forms for aqueous reprocessed high level waste
- 2017Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses
- 2017Apatite and sodalite based glass-bonded waste forms for immobilization of 129I and mixed halide radioactive wastes
- 2013Sublimation-Condensation of Multiscale Tellurium Structurescitations
- 2009DC Ionization Conductivity of Amorphous Semiconductors for Radiation Detection Applicationscitations
- 2008ASGRAD FY07 Annual Report
- 2007FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)
- 2007Differential etching of chalcogenides for infrared photonic waveguide structurescitations
- 2006Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography
- 2006Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system
- 2005FY 2005 Miniature Spherical Retroreflectors Final Report
- 2004FY 2004 Infrared Photonics Final Report
- 2004Chalcogenide glasses and structures for quantum sensing
Places of action
Organizations | Location | People |
---|
report
FY 2005 Miniature Spherical Retroreflectors Final Report
Abstract
Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical and chromatic aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional bistatic LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.