People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Donnelly, Stephen
University of Huddersfield
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Investigation of the microstructure of He+ ion-irradiated TiBe12 and CrBe12 using ex-situ transmission electron microscopycitations
- 2022Observations of He Platelets During He Ion Irradiation in 3C SiCcitations
- 2021Nanostructuring Germanium Nanowires by In Situ TEM Ion Irradiationcitations
- 2021Comparative irradiation response of an austenitic stainless steel with its high-entropy alloy counterpartcitations
- 2020Low-temperature investigations of ion-induced amorphisation in silicon carbide nanowhiskers under helium irradiationcitations
- 2020Effect of decades of corrosion on the microstructure of altered glasses and their radiation stabilitycitations
- 2020Radiation Damage Suppression in AISI-316 Steel Nanoparticles: Implications for the Design of Future Nuclear Materialscitations
- 2019Local chemical instabilities in 20Cr-25Ni Nb-stabilised austenitic stainless steel induced by proton irradiationcitations
- 2019Understanding amorphization mechanisms using ion irradiation in situ a TEM and 3D damage reconstructioncitations
- 2019Direct Comparison of Tungsten Nanoparticles and Foils under Helium Irradiation at High Temperatures Studied via In-Situ Transmission Electron Microscopy
- 2018Synthesis and characterisation of high-entropy alloy thin films as candidates for coating nuclear fuel cladding alloyscitations
- 2016Preliminary assessment of the irradiation behaviour of the FeCrMnNi High-Entropy Alloy for nuclear applications
- 2014In-situ TEM studies of ion-irradiation induced bubble development and mechanical deformation in model nuclear materialscitations
- 2014Helium bubble formation in nuclear glass by in-situ TEM ion implantationcitations
- 2014In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphenecitations
- 2008A cross-sectional transmission electron microscopy study of iron recovered from a laser-heated diamond anvil cellcitations
- 2006Single ion-induced amorphous zones in silicon
- 2005Study of nanocrystalline TiN/Si3N4 thin films deposited using a dual ion beam methodcitations
Places of action
Organizations | Location | People |
---|
booksection
Preliminary assessment of the irradiation behaviour of the FeCrMnNi High-Entropy Alloy for nuclear applications
Abstract
In the search for new nuclear materials with improved radiation tolerance and behavior, the high-entropy alloys (HEAs) have arisen as new candidates for structural components in nuclear reactors due to their suspected superior stability under irradiation. The metallurgical definition of HEAs is any alloy with multiple elements, five or more all in equiatomic compositions. The basic principle is the high mixing entropy of its solid solution lowers the Gibbs free energy giving a strong enhancement of the microstructural stability at low and high temperatures.<br/><br/>The objective of this project is to assess the irradiation behaviour of the FeCrMnNi HEA system in order to investigate whether the high entropy effect is responsible for a microstructure with better radiation resistance compared to conventional alloys. In this work transmission electron microscopy (TEM) with in-situ ion irradiation has been used at the MIAMI-1 facility at the University of Huddersfield, UK: a 100 kV ion accelerator coupled with a JEOL JEM-2000FX TEM. This methodology allows the evolution of the HEA microstructure to be studied on the nanoscale during the ion irradiation.