Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alshahri, Abdullah

  • Google
  • 1
  • 6
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Gradient-Boosted Decision Tree with used Slime Mould Algorithm (SMA) for wastewater treatment systems6citations

Places of action

Chart of shared publication
Almujibah, Hamad
1 / 2 shared
Prashanthi, Vempaty
1 / 1 shared
Chauhan, Jyoti
1 / 1 shared
Radhakrishnan, Arun
1 / 2 shared
Rani, R. M.
1 / 2 shared
Rao, Koppula Srinivas
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Almujibah, Hamad
  • Prashanthi, Vempaty
  • Chauhan, Jyoti
  • Radhakrishnan, Arun
  • Rani, R. M.
  • Rao, Koppula Srinivas
OrganizationsLocationPeople

article

Gradient-Boosted Decision Tree with used Slime Mould Algorithm (SMA) for wastewater treatment systems

  • Alshahri, Abdullah
  • Almujibah, Hamad
  • Prashanthi, Vempaty
  • Chauhan, Jyoti
  • Radhakrishnan, Arun
  • Rani, R. M.
  • Rao, Koppula Srinivas
Abstract

<jats:title>Abstract</jats:title><jats:p>One way to improve the infrastructure, operations, monitoring, maintenance, and management of wastewater treatment systems is to use machine learning modelling to make smart forecasting, tracking, and failure prediction systems. This method aims to use industry data to treat the wastewater treatment model. Gradient-Boosted Decision Tree (GBDT) algorithms were used gradually to predict wastewater plant parameters. In addition, we used the Slime Mould Algorithm (SMA) for feature extraction and other acceptable tuning procedures. The input and effluent Chemical Oxygen Demand (COD) prediction for effluent treatment systems applies to the GBDT approaches employed in this study. GBDT-SMA employs artificial intelligence to provide precise method modelling for complex systems. Several training and model testing techniques were used to determine the best topology for the neural network models and decision trees. The GBDT-SMA model performed best across all methods. With 500 data, GBDT-SMA achieved an accuracy of 96.32%, outperforming other models like Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Deep Convolutional Neural Network (DCNN), and K-neighbours RF, which reached an accuracy of 82.97, 87.45, 85.98, and 91.45%, respectively.</jats:p>

Topics
  • impedance spectroscopy
  • Oxygen
  • extraction
  • machine learning