Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Valtari, Maria

  • Google
  • 1
  • 7
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Presence of human noro- and adenoviruses in river and treated wastewater, a longitudinal study and method comparison33citations

Places of action

Chart of shared publication
Vuorilehto, Veli-Pekka
1 / 1 shared
Maunula, Leena
1 / 3 shared
Laakso, Tuula
1 / 1 shared
Lahti, Kirsti
1 / 1 shared
Bonsdorff, Carl-Henrik Von
1 / 2 shared
Söderberg, Kirsi
1 / 1 shared
Vahtera, Heli
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Vuorilehto, Veli-Pekka
  • Maunula, Leena
  • Laakso, Tuula
  • Lahti, Kirsti
  • Bonsdorff, Carl-Henrik Von
  • Söderberg, Kirsi
  • Vahtera, Heli
OrganizationsLocationPeople

article

Presence of human noro- and adenoviruses in river and treated wastewater, a longitudinal study and method comparison

  • Vuorilehto, Veli-Pekka
  • Maunula, Leena
  • Valtari, Maria
  • Laakso, Tuula
  • Lahti, Kirsti
  • Bonsdorff, Carl-Henrik Von
  • Söderberg, Kirsi
  • Vahtera, Heli
Abstract

<p>Norovirus (NoV) is one of the most common causative agents of waterborne gastroenteritis outbreaks. The main objective of the study was to determine the presence of human NoVs in river water and in treated wastewater (TW) released into the river. During a one-year survey in 2007/2008, NoVs were detected in 30.8% of river samples (20/65), and 40.5% of TW samples (17/45) with a real-time reverse transcription-PCR assay. NoVs were present in the river water in the winter and spring, coinciding with the NoV epidemiological peak in the community and the presence of NoVs in TW. Later in 2009, the concentration method used, pre-filtration with a Waterra filter combined with filtration through a negatively charged membrane, was evaluated against glass wool filtration and freeze-drying for the detection of adenoviruses in river water. The virus amounts measured varied greatly depending on the virus concentration method. The continued monitoring in the spring of 2009 also revealed that the average concentration of noro- and adenoviruses in TW was 2.64 × 103 and 1.29 × 104 pcr units per mL, respectively. No correlation between the presence of viruses and <em>Escherichia coli</em> was found. These results may be useful for risk assessment studies.</p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • drying