Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jebri, Sonia

  • Google
  • 2
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Enhanced cadmium removal from water by hydroxyapatite subjected to different thermal treatments5citations
  • 2013Rietveld structural refinement of <sup>«</sup>A<sup>»</sup> type phosphostrontium carbonate hydroxyapatites4citations

Places of action

Chart of shared publication
Khattech, I.
1 / 1 shared
Rebelo, A.
1 / 17 shared
Ferreira, J. M. F.
1 / 9 shared
Aouay, R.
1 / 1 shared
Boughzala, Habib
1 / 1 shared
Bechrifa, Ali
1 / 2 shared
Jemal, Mohamed
1 / 4 shared
Chart of publication period
2020
2013

Co-Authors (by relevance)

  • Khattech, I.
  • Rebelo, A.
  • Ferreira, J. M. F.
  • Aouay, R.
  • Boughzala, Habib
  • Bechrifa, Ali
  • Jemal, Mohamed
OrganizationsLocationPeople

article

Enhanced cadmium removal from water by hydroxyapatite subjected to different thermal treatments

  • Khattech, I.
  • Jebri, Sonia
  • Rebelo, A.
  • Ferreira, J. M. F.
  • Aouay, R.
Abstract

<jats:title>Abstract</jats:title><jats:p>Hydroxyapatite powders were synthesized according to a wet precipitation route and then subjected to heat treatments within the temperature range of 200–800 °C. The prepared samples were tested as sorbents for cadmium in an aqueous medium. The best performances were obtained with the material treated at 200 °C (HAp200), as the relevant sorbent textural features (SBET – specific surface area and Vp – total volume of pores) were least affected at this low calcination temperature. The maximum adsorption capacity at standard ambient temperature and pressure was 216.6 mg g−1, which increased to 240.7 mg g−1 by increasing the temperature from 25 to 40 °C, suggesting an endothermic nature of the adsorption process. Moreover, these data indicated that a thermal treatment at 200 °C enhanced the ability of the material in Cd2+ uptake by more than 100% compared to other similar studies. The adsorption kinetic process was better described by the pseudo-second-order kinetic model. Langmuir, Freundlich, and Dubinin–Kaganer–Radushkevich isotherms were applied to describe the sorption behaviour of Cd2+ ions onto the best adsorbent. Furthermore, a thermodynamic study was also performed to determine ΔH°, ΔS°, and ΔG° of the sorption process of this adsorbent. The adsorption mechanisms were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy-transmission electron microscopy (SEM-TEM) observations.</jats:p>

Topics
  • pore
  • surface
  • scanning electron microscopy
  • transmission electron microscopy
  • precipitation
  • Fourier transform infrared spectroscopy
  • Cadmium