Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Milagre, Mariana

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023INVESTIGAÇÃO DA ATIVIDADE ELETROQUÍMICA DE LIGA Al-Cu-Li APÓS PROCESSO DE SOLDAGEM POR FRICÇÃO E MISTURA1citations

Places of action

Chart of shared publication
De Sousa Araujo, João Victor
1 / 6 shared
Silva, Rejane Da
1 / 1 shared
Prada Ramirez, Oscar Mauricio
1 / 2 shared
Machado, Caruline
1 / 1 shared
Antunes, Renato
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • De Sousa Araujo, João Victor
  • Silva, Rejane Da
  • Prada Ramirez, Oscar Mauricio
  • Machado, Caruline
  • Antunes, Renato
OrganizationsLocationPeople

article

INVESTIGAÇÃO DA ATIVIDADE ELETROQUÍMICA DE LIGA Al-Cu-Li APÓS PROCESSO DE SOLDAGEM POR FRICÇÃO E MISTURA

  • De Sousa Araujo, João Victor
  • Silva, Rejane Da
  • Milagre, Mariana
  • Prada Ramirez, Oscar Mauricio
  • Machado, Caruline
  • Antunes, Renato
Abstract

<jats:p>INVESTIGATION OF THE ELECTROCHEMICAL ACTIVITY OF AN Al-Cu-Li ALLOY AFTER FRICTION STIR WELDING PROCESS. In this work, the local electrochemical activity of the zones coupled by Friction Stir Welding (FSW) of an Al-Cu-Li alloy was studied and the results were correlated to the microstructural characteristics of each zone. Electrochemical studies were carried out in the zones affected by welding using cyclic voltammetry (CV) and scanning electrochemical techniques (namely, SECM - Scanning Electrochemical Microscopy and LEIS – Local electrochemical impedance spectroscopy). The results showed that the welding joint (WJ) is predominantly cathodic relatively to the heat affected zones (HAZ). The HAZ was always anodic and showed the highest electrochemical activities among the tested ones. The high electrochemical activity of the HAZ was associated with the effect of galvanic coupling between the cathodic region (WJ) and the anodic region (HAZ). In addition, the advancing side (AS) presented increased electrochemical activity compared to the retreating one (RS).</jats:p>

Topics
  • impedance spectroscopy
  • cyclic voltammetry
  • microscopy