People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Foss, Morten
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Comment on “Which fraction of stone wool fibre surface remains uncoated by binder? A detailed analysis by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy” by Hirth et al., 2021, RSC Adv., 11, 39545, DOI: 10.1039/d1ra06251dcitations
- 2023Thermochemical oxidation of commercially pure titanium; controlled formation of robust white titanium oxide layers for biomedical applicationscitations
- 2023Thermochemical oxidation of commercially pure titanium; controlled formation of robust white titanium oxide layers for biomedical applications.citations
- 2022Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bonecitations
- 2022Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bonecitations
- 2022The dissolution of stone wool fibers with sugar-based binder and oil in different synthetic lung fluidscitations
- 2021Post-treatments of polydopamine coatings influence cellular responsecitations
- 2018A comparative in vivo study of strontium-functionalized and SLActive (TM) implant surfaces in early bone healingcitations
- 2017Early stage dissolution characteristics of aluminosilicate glasses with blast furnace slag- and fly-ash-like compositionscitations
- 2015Response of MG63 osteoblast-like cells to ordered nanotopographies fabricated using colloidal self-assembly and glancing angle depositioncitations
- 2015Modulation of Human Mesenchymal Stem Cell Behavior on Ordered Tantalum Nanotopographies Fabricated Using Colloidal Lithography and Glancing Angle Depositioncitations
- 2015Low-aspect ratio nanopatterns on bioinert alumina influence the response and morphology of osteoblast-like cellscitations
- 2012Temperature-induced ultradense PEG polyelectrolyte surface grafting provides effective long-term bioresistance against mammalian cells, serum, and whole bloodcitations
- 2011Growth characteristics of inclined columns produced by Glancing Angle Deposition (GLAD) and colloidal lithographycitations
- 2010Synthesis of functional nanomaterials via colloidal mask templating and glancing angle deposition (GLAD)”
- 2009Polycaprolactone nanomesh cultured with hMSC evaluated by synchrotron tomography
- 2009The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralizationcitations
Places of action
Organizations | Location | People |
---|
article
A comparative in vivo study of strontium-functionalized and SLActive (TM) implant surfaces in early bone healing
Abstract
<p>Purpose: Studies have shown that strontium-doped medical applications benefit bone metabolism leading to improved bone healing and osseointegration. Based on this knowledge, the aim of the study was to evaluate the performance of an implant surface, functionalized by a physical vapor deposition (PVD) coating (Ti-Sr-O), designed to yield predictable release of strontium. The Ti-Sr-O functionalized surface is compared to a routinely used, commercially available surface (SLActive™) with respect to bone-to-implant contact (BIC%) and new bone formation (BF%) in two defined regions of interest (ROI-I and ROI-II, respectively). Materials and methods: Ti-Sr-O functionalized, SLActive, and Grade 4 titanium implants were inserted in the femoral condyle of adult male New Zealand White rabbits. The PVD magnetron-sputtered Ti-Sr-O surface coating was characterized using scanning electron microscopy (SEM) for morphology and coating thickness. Strontium release and mechanical stability of the coating, under simulated insertion conditions, were evaluated. Furthermore, histomorphometrical BIC and BF were carried out 2 weeks after insertion. Results: Histomorphometry revealed increased bone formation of Ti-Sr-O with significant differences compared to SLActive and Grade 4 titanium in both regions of interest, ROI-I and ROI-II, at 0-250 µm and 250-500 µm distance from the implant surfaces. Analogous results of bone-to-implant contact were observed for the two modified surfaces. Conclusion: The results show that a nanopatterned Ti-Sr-O functionalized titanium surface, with sustained release of strontium, increases peri-implant bone volume and could potentially contribute to enhancement of bone anchorage of osseointegrated implants.</p>