Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ninan, Chinnu Mariam

  • Google
  • 3
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Effect of test related factors on the degradation of cement-based materials on acetic acid exposurecitations
  • 2023Investigation on Aggressiveness of Organic Acids on Degradation of Ordinary Portland Cement Mortarcitations
  • 2021Influence of Concrete Mixture Composition on Acid Resistance of Concrete: A Reviewcitations

Places of action

Chart of shared publication
Ramaswamy, K. P.
2 / 2 shared
Sajeeb, R.
2 / 2 shared
Bertron, Alexandra
1 / 32 shared
Radhakrishnan, Ramu
1 / 1 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Ramaswamy, K. P.
  • Sajeeb, R.
  • Bertron, Alexandra
  • Radhakrishnan, Ramu
OrganizationsLocationPeople

article

Influence of Concrete Mixture Composition on Acid Resistance of Concrete: A Review

  • Ninan, Chinnu Mariam
Abstract

<jats:p>Cementitious materials are highly susceptible to rapid and severe degradation by a wide range of acids that are found immensely in ground water, sewage systems, industrial effluents, acid rain etc. which may cause microstructure deterioration. The factors influencing acid attack is generally categorised as material related factors and test related factors. Material related factors can be either related to acid solution or concrete mixture composition. Composition of concrete mixture greatly impacts the acid resistance of concrete. Factors related to composition of concrete mixture are type of cement, type and proportion of binders, water binder ratio, aggregate binder ratio and mineralogical nature of the aggregates. Even though the type of cement influences acid attack, the magnitude of variation is negligible. Consumption of calcium hydroxide and refinement of pore structure makes the use of supplementary cementitious materials favourable for acid resistance. Decrease in water binder ratio and increase in aggregate binder ratio reduces the porosity of concrete and thereby improves the acid resistance of concrete. Calcareous aggregates are preferred for concretes exposed to acids having less soluble salts and not preferred for acids forming soluble salts. This paper highlights the influence of composition of concrete mixture on acid resistance of concrete. A proper formulation of concrete is expected to enhance its acid resistance.</jats:p>

Topics
  • impedance spectroscopy
  • pore
  • laser emission spectroscopy
  • cement
  • forming
  • porosity
  • Calcium