Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wysocki, Bartłomiej

  • Google
  • 14
  • 51
  • 759

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Compositescitations
  • 2020Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Melting12citations
  • 2019The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell response102citations
  • 2019New approach to amorphization of alloys with low glass forming ability via selective laser melting60citations
  • 2018The Influence of Selective Laser Melting (SLM) Process Parameters on In-Vitro Cell Response55citations
  • 2018Investigation of the relationship between morphology and permeability for open-cell foams using virtual materials testing38citations
  • 2018Structure and porosity of titanium scaffolds manufactured by selective laser melting1citations
  • 2017Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM)167citations
  • 2017Fabrication of custom designed spinal disc replacement for veterinary applicationscitations
  • 2017Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants234citations
  • 2016The process of design and manufacturing of titanium scaffolds in the SLM technology for tissue engineeringcitations
  • 2016Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering89citations
  • 2016The Novel Scanning Strategy For Fabrication Metallic Glasses By Selective Laser Meltingcitations
  • 2015CNTs as ion carriers in formation of calcium phosphate coatings1citations

Places of action

Chart of shared publication
Choma, Tomasz
1 / 6 shared
Leonowicz, Marcin
2 / 26 shared
Li, X.
1 / 71 shared
Krawczynska, Agnieszka
1 / 7 shared
Swieszkowski, Wojciech
1 / 15 shared
Żrodowski, Cezary
1 / 2 shared
Błyskun, Piotr
2 / 11 shared
Wróblewski, Rafał
3 / 11 shared
Kulikowski, Krzysztof
1 / 18 shared
Małachowska, Aleksandra
1 / 3 shared
Moneta, Grzegorz
1 / 2 shared
Masset, Patrick
1 / 2 shared
Cetner, Tomasz
1 / 2 shared
Jaroszewicz, Jakub
2 / 23 shared
Dobkowska, Anna
1 / 33 shared
Ciftci, Jakub
1 / 8 shared
Yuan, L.
1 / 7 shared
Morończyk, Bartosz
1 / 12 shared
Chulist, Robert
1 / 23 shared
Żrodowski, Łukasz
4 / 12 shared
Szustecki, Maciej
1 / 1 shared
Sitek, Ryszard
2 / 38 shared
Wiśniewski, Paweł
1 / 26 shared
Mizera, Jarosław
1 / 113 shared
Brynk, Tomasz
2 / 19 shared
Idaszek, Joanna
3 / 10 shared
Kurzydłowski, Krzysztof
7 / 114 shared
Buhagiar, Joseph
2 / 10 shared
Święszkowski, Wojciech
11 / 53 shared
Szlązak, Karol
3 / 10 shared
Krawczyńska, Agnieszka
2 / 15 shared
Zdunek, Joanna
3 / 34 shared
Ferenc, Jarosław
1 / 11 shared
Adamczyk-Cieślak, Bogusława
1 / 77 shared
Pisarek, Marcin
1 / 16 shared
Yamamoto, A.
1 / 10 shared
Rożniatowski, Krzysztof
2 / 15 shared
Westhoff, Daniel
1 / 3 shared
Wejrzanowski, Tomasz
1 / 27 shared
Šedivý, Ondřej
1 / 1 shared
Schmidt, Volker
1 / 32 shared
Skibiński, Jakub
1 / 7 shared
Skalski, Konstanty
2 / 2 shared
Makuch, Anna
2 / 2 shared
Jankowski, Krzysztof
2 / 2 shared
Maj, Piotr
2 / 15 shared
Chmielewska, Agnieszka
1 / 5 shared
Sterna, Jacek
1 / 1 shared
Strzelczyk, Karolina
1 / 1 shared
Leszczyńska, D.
1 / 1 shared
Dybala, B.
1 / 1 shared
Chart of publication period
2022
2020
2019
2018
2017
2016
2015

Co-Authors (by relevance)

  • Choma, Tomasz
  • Leonowicz, Marcin
  • Li, X.
  • Krawczynska, Agnieszka
  • Swieszkowski, Wojciech
  • Żrodowski, Cezary
  • Błyskun, Piotr
  • Wróblewski, Rafał
  • Kulikowski, Krzysztof
  • Małachowska, Aleksandra
  • Moneta, Grzegorz
  • Masset, Patrick
  • Cetner, Tomasz
  • Jaroszewicz, Jakub
  • Dobkowska, Anna
  • Ciftci, Jakub
  • Yuan, L.
  • Morończyk, Bartosz
  • Chulist, Robert
  • Żrodowski, Łukasz
  • Szustecki, Maciej
  • Sitek, Ryszard
  • Wiśniewski, Paweł
  • Mizera, Jarosław
  • Brynk, Tomasz
  • Idaszek, Joanna
  • Kurzydłowski, Krzysztof
  • Buhagiar, Joseph
  • Święszkowski, Wojciech
  • Szlązak, Karol
  • Krawczyńska, Agnieszka
  • Zdunek, Joanna
  • Ferenc, Jarosław
  • Adamczyk-Cieślak, Bogusława
  • Pisarek, Marcin
  • Yamamoto, A.
  • Rożniatowski, Krzysztof
  • Westhoff, Daniel
  • Wejrzanowski, Tomasz
  • Šedivý, Ondřej
  • Schmidt, Volker
  • Skibiński, Jakub
  • Skalski, Konstanty
  • Makuch, Anna
  • Jankowski, Krzysztof
  • Maj, Piotr
  • Chmielewska, Agnieszka
  • Sterna, Jacek
  • Strzelczyk, Karolina
  • Leszczyńska, D.
  • Dybala, B.
OrganizationsLocationPeople

article

How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Composites

  • Choma, Tomasz
  • Leonowicz, Marcin
  • Li, X.
  • Krawczynska, Agnieszka
  • Swieszkowski, Wojciech
  • Żrodowski, Cezary
  • Błyskun, Piotr
  • Wróblewski, Rafał
  • Kulikowski, Krzysztof
  • Małachowska, Aleksandra
  • Moneta, Grzegorz
  • Masset, Patrick
  • Wysocki, Bartłomiej
  • Cetner, Tomasz
  • Jaroszewicz, Jakub
  • Dobkowska, Anna
  • Ciftci, Jakub
  • Yuan, L.
  • Morończyk, Bartosz
  • Chulist, Robert
  • Żrodowski, Łukasz
Abstract

This paper presents a strategy to create highly oriented crystalline-amorphous composites during the laser powder bed fusion (LPBF) process. The well-known AMZ4 (Zr 59.3 Cu 28.8 Al 10.4 Nb 1.5 ) and equiatomic CuZr amorphous alloys were processed by a novel two-stage melting strategy followed by ultra-high-pressure hot isostatic pressing (HIP).The experiments show that with fine-tuning laser parameters, purely amorphous material, and laminate amorphous-crystalline composites with a part-specific microstructural design, can be created. Novel opportunities for nonequilibrium phase distribution design were provided by controlling local crystallization in the heat-affected zone (HAZ) and avoidance of heat accumulation. Moreover, the porous amorphous material was densified without crystallization using HIP at a temperature near the supercooled liquid region.The distribution of the crystalline phase created during LPBF and crystallization on pre-induced nuclei during HIP was proven to be a critical factor for composite properties. The influence of crystalline-amorphous layers orientation on mechanical properties was revealed in wear and bending tests. Functional components were manufactured, showing outstanding possibilities in the design for additive manufacturing (DfAM) with a microstructure-designed composite.

Topics
  • porous
  • microstructure
  • amorphous
  • experiment
  • crystalline phase
  • glass
  • glass
  • composite
  • selective laser melting
  • bending flexural test
  • hot isostatic pressing
  • crystallization
  • nonequilibrium phase