Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

King, Penelope

  • Google
  • 11
  • 32
  • 562

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2019 An experimental study of SO 2 reactions with silicate glasses and supercooled melts in the system anorthite–diopside–albite at high temperature 11citations
  • 2018SO2 gas reactions with silicate glasses33citations
  • 2015Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption91citations
  • 2013Development of a new laboratory technique for high-temperature thermal emission spectroscopy of silicate melts23citations
  • 2013A micro-reflectance IR spectroscopy method for analyzing volatile species in basaltic, andesitic, phonolitic, and rhyolitic glasses22citations
  • 2013Volatile-rich silicate melts from Oldoinyo Lengai volcano (Tanzania)59citations
  • 2011Methods to analyze metastable and microparticulate hydrated and hydrous iron sulfate minerals21citations
  • 2009Effect of SiO2, total FeO, Fe3+/Fe2+ and alkali elements in basaltic glasses on mid-infrared spectra36citations
  • 2007Resolution of bridging oxygen signals from O 1s spectra of silicate glasses using XPS108citations
  • 2006A new approach to determine and quantify structural units in silicate glasses using micro-reflectance Fourier-Transform infrared spectroscopy73citations
  • 2002CO2 solubility and speciation in intermediate (andesitic) melts85citations

Places of action

Chart of shared publication
Guagliardo, P.
1 / 2 shared
Henley, R. W.
1 / 2 shared
Middleton, J. P.
1 / 2 shared
Mcmorrow, L.
1 / 1 shared
Renggli, C. J.
1 / 1 shared
Turner, M.
1 / 4 shared
Renggli, Christian J.
2 / 2 shared
Clark, David A.
1 / 1 shared
Wykes, Jeremy L.
1 / 1 shared
Brink, Frank J.
1 / 1 shared
Henley, Richard W.
1 / 1 shared
Ramsey, Michael S.
1 / 1 shared
Lee, Rachel J.
1 / 1 shared
Larsen, Jessica F.
1 / 1 shared
Ramirez, Carlos
1 / 1 shared
Mangasini, Frederick
1 / 1 shared
Barry, Peter H.
1 / 1 shared
Fischer, Tobias P.
1 / 1 shared
Moor, J. Maarten De
1 / 1 shared
Botcharnikov, Roman E.
1 / 4 shared
Hilton, David R.
1 / 1 shared
Hervig, Richard L.
1 / 1 shared
Hyde, Brendt C.
1 / 1 shared
Spilde, Michael N.
1 / 1 shared
Ali, Abdul Mehdi S.
1 / 1 shared
Dyar, M. Darby
2 / 5 shared
Dufresne, Céleste D. M.
1 / 1 shared
Dalby, Klm N.
1 / 1 shared
Zakaznova-Herzog, Valentina P.
1 / 2 shared
Nesbitt, H. Wayne
1 / 4 shared
Dalby, Kim N.
2 / 8 shared
Holloway, J. R.
1 / 1 shared
Chart of publication period
2019
2018
2015
2013
2011
2009
2007
2006
2002

Co-Authors (by relevance)

  • Guagliardo, P.
  • Henley, R. W.
  • Middleton, J. P.
  • Mcmorrow, L.
  • Renggli, C. J.
  • Turner, M.
  • Renggli, Christian J.
  • Clark, David A.
  • Wykes, Jeremy L.
  • Brink, Frank J.
  • Henley, Richard W.
  • Ramsey, Michael S.
  • Lee, Rachel J.
  • Larsen, Jessica F.
  • Ramirez, Carlos
  • Mangasini, Frederick
  • Barry, Peter H.
  • Fischer, Tobias P.
  • Moor, J. Maarten De
  • Botcharnikov, Roman E.
  • Hilton, David R.
  • Hervig, Richard L.
  • Hyde, Brendt C.
  • Spilde, Michael N.
  • Ali, Abdul Mehdi S.
  • Dyar, M. Darby
  • Dufresne, Céleste D. M.
  • Dalby, Klm N.
  • Zakaznova-Herzog, Valentina P.
  • Nesbitt, H. Wayne
  • Dalby, Kim N.
  • Holloway, J. R.
OrganizationsLocationPeople

article

A micro-reflectance IR spectroscopy method for analyzing volatile species in basaltic, andesitic, phonolitic, and rhyolitic glasses

  • Larsen, Jessica F.
  • King, Penelope
Abstract

<p>Volatile contents of geologic glasses are used to model magma chamber and degassing processes, thus, there is considerable interest in small-scale analytical techniques for analyzing volatiles in glasses. Infrared (IR) spectroscopy has the advantage of determining volatile speciation in glasses (e.g., OH-, molecular H<sub>2</sub>O, molecular CO<sub>2</sub>, and CO <sub>3</sub><sup>2-</sup>). However, sample preparation for the most common IR method used, micro-transmission IR spectroscopy, is complicated because glasses must be prepared as thin, parallel-sided wafers. Raman analysis, while valuable for Fe-poor samples, can be difficult to use for Fe-rich glasses. We have calibrated a micro-reflectance infrared method for determining volatile species using calculated Kramers-Kronig absorbance (KK-Abs.) spectra that requires that only one side of a glass be polished. The method is easier to use than other reflectance methods where it is difficult to determine the baseline for the IR bands. Total H<sub>2</sub>O wt% = m·(3600 cm<sup>-1</sup> KK-Abs.), where m, is the slope of the calibration line that is obtained from a fit to the data. The m value is related to the calculated refractive index, n, for a range of aluminosilicate glass compositions allowing the technique to be applied to samples with unknown calibration slopes. For calc-alkaline andesite glasses we determined calibration slopes for micro-reflectance IR measurements of molecular H<sub>2</sub>O, molecular CO<sub>2</sub>, and CO<sub>3</sub><sup>2-</sup>. The method has been calibrated for glasses with up to 6.76 wt% total H<sub>2</sub>O (but is useful for glasses with more than 20 wt% total H<sub>2</sub>O) and has been calibrated for glasses with up to 0.575 wt% total CO<sub>2</sub>. This technique provides a means to analyze volatile abundances in samples that are not possible to analyze or prepare for analysis with transmission micro-IR techniques. We have determined volatile contents in fragile samples such as cracked, vesicular, or crystal-bearing glasses formed by volcanic or impact processes or in high-pressure bubble nucleation experiments and H diffusion experiments. We have monitored H uptake during weathering of basaltic glasses that cannot be polished and determined volatiles in melt inclusions and pumice.</p>

Topics
  • impedance spectroscopy
  • inclusion
  • experiment
  • melt
  • glass
  • glass
  • degassing
  • infrared spectroscopy