Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dyar, M. Darby

  • Google
  • 5
  • 26
  • 91

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Wave vector and field vector orientation dependence of Fe <i>K</i> pre-edge X-ray absorption features in clinopyroxenes4citations
  • 2023Fe(III) (oxyhydr)oxide reduction by the thermophilic iron-reducing bacterium Desulfovulcanus ferrireducens2citations
  • 2012Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars28citations
  • 2011Methods to analyze metastable and microparticulate hydrated and hydrous iron sulfate minerals21citations
  • 2009Effect of SiO2, total FeO, Fe3+/Fe2+ and alkali elements in basaltic glasses on mid-infrared spectra36citations

Places of action

Chart of shared publication
Lanzirotti, Antonio
1 / 4 shared
Steven, Cody J.
1 / 1 shared
Newville, Matthew
1 / 4 shared
Sklute, Elizabeth C.
1 / 1 shared
Livi, Kenneth J. T.
1 / 2 shared
Leopo, Deborah A.
1 / 1 shared
Neat, Kaylee A.
1 / 1 shared
Flemming, Roberta
1 / 1 shared
Gómez-Ortíz, David
1 / 1 shared
Banerjee, Neil R.
1 / 2 shared
Rodríguez, Nuria
1 / 4 shared
Preston, Louisa J.
1 / 1 shared
Izawa, Matthew R. M.
1 / 1 shared
Osinski, Gordon R.
1 / 1 shared
Sánchez-Román, Mónica
1 / 2 shared
Prieto-Ballesteros, Olga
1 / 2 shared
Amils, Ricardo
1 / 1 shared
Fernández-Remolar, David C.
1 / 2 shared
Huang, L.
1 / 3 shared
Southam, Gordon
1 / 2 shared
Hyde, Brendt C.
1 / 1 shared
Spilde, Michael N.
1 / 1 shared
Ali, Abdul Mehdi S.
1 / 1 shared
King, Penelope
2 / 11 shared
Dufresne, Céleste D. M.
1 / 1 shared
Dalby, Klm N.
1 / 1 shared
Chart of publication period
2023
2012
2011
2009

Co-Authors (by relevance)

  • Lanzirotti, Antonio
  • Steven, Cody J.
  • Newville, Matthew
  • Sklute, Elizabeth C.
  • Livi, Kenneth J. T.
  • Leopo, Deborah A.
  • Neat, Kaylee A.
  • Flemming, Roberta
  • Gómez-Ortíz, David
  • Banerjee, Neil R.
  • Rodríguez, Nuria
  • Preston, Louisa J.
  • Izawa, Matthew R. M.
  • Osinski, Gordon R.
  • Sánchez-Román, Mónica
  • Prieto-Ballesteros, Olga
  • Amils, Ricardo
  • Fernández-Remolar, David C.
  • Huang, L.
  • Southam, Gordon
  • Hyde, Brendt C.
  • Spilde, Michael N.
  • Ali, Abdul Mehdi S.
  • King, Penelope
  • Dufresne, Céleste D. M.
  • Dalby, Klm N.
OrganizationsLocationPeople

article

Methods to analyze metastable and microparticulate hydrated and hydrous iron sulfate minerals

  • Hyde, Brendt C.
  • Spilde, Michael N.
  • Ali, Abdul Mehdi S.
  • King, Penelope
  • Dyar, M. Darby
Abstract

<p>We evaluate analytical methods for characterizing hydrated and hydrous iron sulfate minerals (HHIS) that are typically metastable in air or vacuum, commonly form micrometer-sized particles, and contain multi-valent and light elements (Fe<sup>2+</sup>, Fe<sup>3+</sup>, OH-, and H<sub>2</sub>O) that may be challenging to quantify. We synthesized or obtained HHIS-szomolnokite, melanterite, rhomboclase, schwertmannite, ferricopiapite, paracoquimbite, and jarosite-as well as Fe-oxides. These nominally pure samples were characterized with X-ray diffraction (XRD), and then used to evaluate bulk analyses obtained from combined inductively coupled plasma, optical emission spectroscopy (ICP-OES), ion chromatography (IC), Mössbauer spectroscopy, and mass spectrometry. Integrated bulk analyses showed excellent agreement with the nominal formulas for the minerals. Because HHIS commonly form micro-sized particles-for example, HHIS found in acid mine drainage (AMD) environments and in martian meteorites-it is necessary to develop micro-analytical techniques. Microscopic mid-infrared spectroscopy allows the analyst to successfully discriminate among HHIS with minimal sample preparation on the small scale (̃40 × 40 μm). For chemical analysis, electron probe microanalysis (EPMA) is preferred for samples that can be mounted, polished, coated, and that are stable under high vacuum; however, few HHIS meet those criteria. To characterize HHIS compositions, we show that multiple low-vacuum scanning electron microscopy (SEM) analyses of the same uncoated, unpolished mineral are required. Analysis of each mineral shows linear trends on ternary diagrams of 5×Fe-SO<sub>4</sub>-O (where oxygen is in O, OH, and H<sub>2</sub>O) that may be used to narrow down the HHIS mineralogy. Low-vacuum SEM also provides invaluable information about the geochemical and textural context of the samples. Our study provides protocols for microanalysis of these challenging, fine-grained, and metastable HHIS that may also be applied to other mineral groups.</p>

Topics
  • impedance spectroscopy
  • mineral
  • x-ray diffraction
  • Oxygen
  • mass spectrometry
  • iron
  • spectrometry
  • atomic emission spectroscopy
  • infrared spectroscopy
  • Mössbauer spectroscopy
  • electron probe micro analysis
  • ion chromatography