People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kuwayama, Yasuhiro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Viscosity of Earth’s inner core constrained by Fe–Ni interdiffusion in Fe–Si alloy in an internal-resistive-heated diamond anvil cellcitations
- 2022Density determination of liquid iron-nickel-sulfur at high pressurecitations
- 2022Density determination of liquid iron-nickel-sulfur at high pressurecitations
Places of action
Organizations | Location | People |
---|
article
Density determination of liquid iron-nickel-sulfur at high pressure
Abstract
<jats:title>Abstract</jats:title><jats:p>The density of liquid iron-nickel-sulfur (Fe46.5Ni28.5S25) alloy was determined at pressures up to 74 GPa and an average temperature of 3400 K via pair distribution function (PDF) analysis of synchrotron X-ray diffraction (XRD) data obtained using laser-heated diamond-anvil cells. The determined density of liquid Fe46.5Ni28.5S25 at 74 GPa and 3400 K is 8.03(35) g/cm3, 15% lower than that of pure liquid Fe. The obtained density data were fitted to a third-order Vinet equation of state (EoS), and the determined isothermal bulk modulus and its pressure derivative at 24.6 GPa are KTPr = 110.5(250) GPa and KTPr′ = 7.2(25), respectively, with a fixed density of rPr = 6.43 g/cm3 at 24.6 GPa. The change in the atomic volume of Fe46.5Ni28.5S25 upon melting was found to be ~10% at the melting temperature, a significantly larger value than that of pure Fe (~3%). Combined with the above EoS parameters and the thermal dependence reported in the literature, our data were extrapolated to the outer core conditions of the Earth. Assuming that S is the only light element and considering the range of suggested Ni content, we estimated a 5.3–6.6 wt% S content in the Earth’s outer core.</jats:p>