People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Drewitt, James W. E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Boron incorporation in silicate melt
- 2022The glass transition and the non-Arrhenian viscosity of carbonate meltscitations
- 2022The glass transition and the non-Arrhenian viscosity of carbonate meltscitations
- 2022Boron incorporation in silicate melt:pressure-induced coordination changes and implications for B isotope fractionation
- 2021Structure of levitated Si-Ge melts studied by high-energy x-ray diffraction in combination with reverse Monte Carlo simulationscitations
- 2019Configurational constraints on glass formation in the liquid calcium aluminate systemcitations
- 2017Structure of rare-earth chalcogenide glasses by neutron and x-ray diffractioncitations
- 2016Neutron diffraction of calcium aluminosilicate glasses and meltscitations
- 2013Structure of (FexCa1-xO)(y)(SiO2)(1-y) liquids and glasses from high-energy x-ray diffractioncitations
- 2013Fragile glass - formers reveal their structural secrets
- 2013Structure of (FexCa1-xO)(y)(SiO2)(1-y) liquids and glasses from high-energy x-ray diffraction:Implications for the structure of natural basaltic magmascitations
- 2011Application of time resolved x-ray diffraction to study the solidification of glass-forming melts
Places of action
Organizations | Location | People |
---|
article
The glass transition and the non-Arrhenian viscosity of carbonate melts
Abstract
<jats:title>Abstract</jats:title><jats:p>We report the first calorimetric observation of the glass transition for a carbonate melt. A carbonate glass [55K2CO3–45MgCO3 (molar)] was quenched from 780 °C at 0.1 GPa. The activation energy of structural relaxation close to the glass transition was derived through a series of thermal treatments comprising excursions across the glass transition at different heating rates. Viscosities just above the glass transition temperature were obtained by applying a shift factor to the calorimetric results. These viscosity measurements (in the range of 109 Pa·s) at supercooled temperatures (ca. 230 °C) dramatically extend the temperature range of data for carbonates, which were previously restricted to super-liquidus viscosities well below 1 Pa·s. Combining our calorimetrically derived results with published alkaline-earth carbonate melt viscosities at high temperatures yields a highly non-Arrhenian viscosity-temperature relationship and confirms that carbonate liquids are “fragile.” Based on simulations, fragile behavior is also exhibited by Na2CO3 melt. In both cases, the fragility presumably relates to the formation of temperature-dependent low-dimensional structures and Vogel-Fulcher-Tammann (VFT) curves adequately describe the viscosity-temperature relationships of carbonate melts below 1000 °C.</jats:p>