People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Majzlan, Juraj
Friedrich Schiller University Jena
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Heat capacity, entropy, configurational entropy, and viscosity of magnesium silicate glasses and liquidscitations
- 2021Incorporation mechanism of tungsten in W-Fe-Cr-V-bearing rutilecitations
- 2020Processes of metastable-mineral formation in oxidation zones and mine wastecitations
- 2013Vysokýite, U<sup>4+</sup>[AsO<sub>2</sub>(OH)<sub>2</sub>]<sub>4</sub>·4H<sub>2</sub>O, a new mineral from Jáchymov, Czech Republiccitations
- 2011Bêhounekite, U(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>, from Jáchymov (St Joachimsthal), Czech Republic: the first natural U<sup>4+</sup>sulphatecitations
- 2010Hydrogen bonding in coquimbite, nominally Fe2(SO4)3×9H2O, and the relationship between coquimbite and paracoquimbite
- 2009Matrix composition and community structure analysis of a novel bacterial pyrite leaching communitycitations
Places of action
Organizations | Location | People |
---|
article
Incorporation mechanism of tungsten in W-Fe-Cr-V-bearing rutile
Abstract
<jats:title>Abstract</jats:title><jats:p>Rutile is a common mineral in many types of ore deposits and can carry chemical or isotopic information about the ore formation. For closer understanding of this information, the mechanisms of incorporation of minor elements should be known. In this work, we have investigated natural rutile crystals with elevated concentrations of WO3 (up to 17.7 wt%), Cr2O3,tot (7.5), V2O3,tot (4.1), FeOtot (7.3), and other metals. X-ray absorption spectroscopy (XAS) of rutile at the Fe K, Cr K, V K, and W L1 and L3 edges shows that all cations are coordinated octahedrally. The average oxidation state of V is +3.8, and that of Cr is near +4. Shell-by-shell fitting of the W L3 EXAFS data shows that W resides in the rutile structure. Raman spectroscopy excludes the possibility of hydrogen as a charge-compensating species. High-resolution TEM and electron diffraction confirm this conclusion as the entire inspected area consists of rutile single crystal with variable amounts of metals other than Ti. Our results show that rutile or its precursors can be efficient vehicles for tungsten in sedimentary rocks, leading to their enrichment in W and possibly later fertility with respect to igneous ore deposits. Leucoxene, a nanocrystalline mixture of Ti and Fe oxides, is an especially suitable candidate for such a vehicle.</jats:p>