Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Murri, Mara

  • Google
  • 3
  • 4
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021A Grüneisen tensor for rutile and its application to host-inclusion systems7citations
  • 2021A Grüneisen tensor for rutile and its application to host-inclusion systems7citations
  • 2021A Grüneisen tensor for rutile and its application to host-inclusion systems7citations

Places of action

Chart of shared publication
Alvaro, Matteo
2 / 4 shared
Angel, Ross J.
2 / 3 shared
Musiyachenko, Kira A.
2 / 2 shared
Prencipe, Mauro
2 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Alvaro, Matteo
  • Angel, Ross J.
  • Musiyachenko, Kira A.
  • Prencipe, Mauro
OrganizationsLocationPeople

article

A Grüneisen tensor for rutile and its application to host-inclusion systems

  • Murri, Mara
Abstract

<jats:title>Abstract</jats:title><jats:p>Rutile is often found as inclusions in garnet, quartz, and several other rock-forming minerals, and it is also a common accessory phase in high-pressure metamorphic rocks. Its relatively simple structure, chemistry, broad P-T stability field, and its wide occurrence in nature makes it a candidate for the application of elastic geobarometry. However, thermodynamic studies coupled with observations on natural samples predict that rutile inclusions in garnets should exhibit zero residual pressure. This implies that the rutile inclusions are detached from the inclusion walls in the host garnet after entrapment. We determined the elastic and vibrational properties of rutile via ab initio hybrid Hartree-Fock/Density Functional Theory simulations under different strain states. Our results confirmed the thermodynamic behavior of rutile in garnet and allowed us to determine for the first time the components of the phonon-mode Grüneisen tensors of rutile. We demonstrated that pure rutile inclusions in garnets from metamorphic rocks exhibit no residual strain or stress, consistent with thermodynamic modeling. Nevertheless, there are rutile inclusions in garnet surrounded by optical birefringence haloes, which are indicative of residual inclusion pressures. Careful examination of these show that they contain significant amounts of amphibole, which reduce the elastic moduli of the composite inclusion to less than that of the garnet hosts. A calculation method for the residual pressures of multi-phase inclusions is described.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • mineral
  • inclusion
  • phase
  • theory
  • simulation
  • laser emission spectroscopy
  • composite
  • density functional theory
  • forming