Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Catalano, Jeffrey G.

  • Google
  • 2
  • 7
  • 106

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019The quench control of water estimates in convergent margin magmas37citations
  • 2012Inhibition of trace element release during Fe(II)-activated recrystallization of Al-, Cr-, and Sn-substituted goethite and hematite69citations

Places of action

Chart of shared publication
Li, Wenlu
1 / 1 shared
Krawczynski, Michael
1 / 1 shared
Ruprecht, Philipp
1 / 1 shared
Engelhard, Mark H.
1 / 4 shared
Rapponotti, Brett W.
1 / 1 shared
Bachman, Jonathan E.
1 / 1 shared
Scherer, Michelle M.
1 / 1 shared
Chart of publication period
2019
2012

Co-Authors (by relevance)

  • Li, Wenlu
  • Krawczynski, Michael
  • Ruprecht, Philipp
  • Engelhard, Mark H.
  • Rapponotti, Brett W.
  • Bachman, Jonathan E.
  • Scherer, Michelle M.
OrganizationsLocationPeople

article

The quench control of water estimates in convergent margin magmas

  • Li, Wenlu
  • Catalano, Jeffrey G.
  • Krawczynski, Michael
  • Ruprecht, Philipp
Abstract

<jats:title>Abstract</jats:title><jats:p>Here we present a study on the quenchability of hydrous mafic melts. We show via hydrothermal experiments that the ability to quench a mafic hydrous melt to a homogeneous glass at cooling rates relevant to natural samples has a limit of no more than 9 ± 1 wt% of dissolved H2O in the melt. We performed supra-liquidus experiments on a mafic starting composition at 1–1.5 GPa spanning H2O-undersaturated to H2O-saturated conditions (from ~1 to ~21 wt%). After dissolving H2O and equilibrating, the hydrous mafic melt experiments were quenched. Quenching rates of 20 to 90 K/s at the glass transition temperature were achieved, and some experiments were allowed to decompress from thermal contraction while others were held at an isobaric condition during quench. We found that quenching of a hydrous melt to a homogeneous glass at quench rates comparable to natural conditions is possible at water contents up to 6 wt%. Melts containing 6–9 wt% of H2O are partially quenched to a glass, and always contain significant fractions of quench crystals and glass alteration/devitrification products. Experiments with water contents greater than 9 wt% have no optically clear glass after quench and result in fine-grained mixtures of alteration/devitrification products (minerals and amorphous materials). Our limit of 9 ± 1 wt% agrees well with the maximum of dissolved H2O contents found in natural glassy melt inclusions (8.5 wt% H2O). Other techniques for estimating pre-eruptive dissolved H2O content using petrologic and geochemical modeling have been used to argue that some arc magmas are as hydrous as 16 wt% H2O. Thus, our results raise the question of whether the observed record of glassy melt inclusions has an upper limit that is partially controlled by the quenching process. This potentially leads to underestimating the maximum amount of H2O recycled at arcs when results from glassy melt inclusions are predominantly used to estimate water fluxes from the mantle.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • amorphous
  • inclusion
  • experiment
  • melt
  • glass
  • glass
  • glass transition temperature
  • quenching
  • dissolving