People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ryan, Chris
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Microelectronic junctions in arsenian pyrite due to impurity and mixed sulfide heterogeneity
Abstract
Impurities and crystal defects within the semiconducting bulk of a metal sulfide introduce energy levels within the forbidden bandgap. These levels in turn control semiconducting type and local electrical properties within single and multi-phased sulfide assemblages. Heterogeneity in sulfide semiconductivity linked to these impurities can lead to p-n micro-junction formation and potential distributions near the surface that may alter redox reactivity. Secondary gold ore genesis via a micro-galvanic effect related to heterogeneity has in the past been hypothetically linked to such micro-junctions. Understanding these regions and their interaction with weathering fluids in the regolith for example requires large-scale imaging of potential distributions associated with near-surface micro-junctions and correlation with the responsible elemental distributions. Here we investigate the existence of micro-electronic junctions in a mixed sulfide assemblage using scanning laser beam induced current (LBIC) and correlate them with pyrite-chalcopyrite interfaces mapped using combined energy-dispersive spectroscopy (EDS) and wavelength-dispersive spectroscopy (WDS) on an electron hyper-probe. Junctions in a natural assemblage are positively identified for the first time.