Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vijayan, Kuhanraj

  • Google
  • 1
  • 2
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Impact Modified Polyvinyl Chloride Based Thermoplastic Elastomers: Effect of Nitrile Butadiene Rubber and Graphene Oxide Loading3citations

Places of action

Chart of shared publication
Munusamy, Yamuna
1 / 3 shared
Muniyadi, Mathialagan
1 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Munusamy, Yamuna
  • Muniyadi, Mathialagan
OrganizationsLocationPeople

article

Impact Modified Polyvinyl Chloride Based Thermoplastic Elastomers: Effect of Nitrile Butadiene Rubber and Graphene Oxide Loading

  • Vijayan, Kuhanraj
  • Munusamy, Yamuna
  • Muniyadi, Mathialagan
Abstract

<jats:p>A new thermoplastic elastomer with improved impact and tensile properties was produced through melt blending of graphene oxide filled nitrile butadiene rubber (NBR-GO) and polyvinyl chloride (PVC) without the addition of plasticisers and thermal stabilisers. Nitrile butadiene rubber (NBR) compounds, with and without graphene oxide (GO) are prepared through latex compounding method and cured, prior to blending with PVC. The effect of NBR and NBR-GO loading on the process-ability and physico-mechanical properties of PVC blends were evaluated. The addition of NBR and NBR-GO improved tensile strength (TS), impact strength and swelling resistance of PVC. Addition of NBR also increased the stiffness of PVC due to higher elasticity of NBR as compared to PVC. Optimum impact strength, TS and swelling resistance was achieved with the addition of 10 wt. % NBR-GO. Good miscibility between NBR and PVC, and additional reinforcement by GO is responsible for enhancement of impact and TS. NBR-GO showed greater miscibility in PVC as compared to NBR as proven by morphological observation under scanning electron microscope. Morphological observation reveals that micro-cracks formation on PVC/30NBR surface which is responsible for low impact, tensile and swelling properties as compared to PVC/30NBR-GO composite.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • melt
  • crack
  • strength
  • composite
  • elasticity
  • tensile strength
  • thermoplastic
  • rubber
  • elastomer
  • thermoplastic elastomer
  • nitrile