People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carrington, Peter James
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021ULTRARAM™: a low-energy, high-endurance, compound-semiconductor memory on silicon
- 2019Mid-Infrared InAs/InAsSb Superlattice nBn Photodetector Monolithically Integrated onto Siliconcitations
- 2019Low bandgap GaInAsSb thermophotovoltaic cells on GaAs substrate with advanced metamorphic buffer layercitations
- 2019Low bandgap GaInAsSb thermophotovoltaic cells on GaAs substrate with advanced metamorphic buffer layer
- 2016Characterization of 6.1 Å III-V materials grown on GaAs and Si: a comparison of GaSb/GaAs epitaxy and GaSb/AlSb/Si epitaxycitations
- 2013Rapid thermal annealing and photoluminescence of type-II GaSb single monolayer quantum dot stackscitations
Places of action
Organizations | Location | People |
---|
document
ULTRARAM™: a low-energy, high-endurance, compound-semiconductor memory on silicon
Abstract
<jats:title>Abstract</jats:title><jats:p>ULTRARAM™ is a non-volatile memory with the potential to achieve fast, ultra-low-energy electron storage in a floating gate accessed through a triple-barrier resonant tunnelling heterostructure. Here we report the implementation of ULTRARAM™ on a Si substrate; a vital step towards cost-effective mass production. Sample growth was carried out using molecular beam epitaxy, by first depositing an AlSb nucleation layer to seed the growth of a GaSb buffer layer, followed by the III-V memory epilayers. Fabricated single-cell memories show clear 0/1 logic-state contrast after ≤10-ms duration program/erase pulses of ~2.5 V, a remarkably fast switching speed for 10- and 20-µm devices. Furthermore, the combination of low voltage and small device capacitance per unit area results in a switching energy that is orders of magnitude lower than dynamic random access memory and flash, for a given cell size. Extended testing of the devices revealed retention in excess of 1000 years and degradation-free endurance of over 10<jats:sup>7</jats:sup> program/erase cycles, exceeding very recent results for similar devices on GaAs substrates.</jats:p>