Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khater, Hassan

  • Google
  • 2
  • 6
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Conjunctive Use of BTC and Batch Methods for Heavy Metal Transportcitations
  • 2011Interaction of Carbon with Vacancy and Self-Interstitial Atom Clusters in [alpha]-Iron Studied using Metallic-Covalent Interatomic Potential56citations

Places of action

Chart of shared publication
Hussein, Mohamed Fahmy
1 / 1 shared
Serra, Anna
1 / 3 shared
Bonny, Giovanni
1 / 11 shared
Terentyev, Dmitry
1 / 18 shared
Jansson, Ville
1 / 9 shared
Anento, Napoleon
1 / 1 shared
Chart of publication period
2020
2011

Co-Authors (by relevance)

  • Hussein, Mohamed Fahmy
  • Serra, Anna
  • Bonny, Giovanni
  • Terentyev, Dmitry
  • Jansson, Ville
  • Anento, Napoleon
OrganizationsLocationPeople

document

Conjunctive Use of BTC and Batch Methods for Heavy Metal Transport

  • Hussein, Mohamed Fahmy
  • Khater, Hassan
Abstract

<jats:title>Abstract</jats:title><jats:p>Marginal sediments can be used to combat point-pollution by heavy metals in industrial zones. Such practice requires information on metal-concentration in the workshop discharge water. Knowledge about the reaction of the heavy metal with the sediment available in the landscape is of utmost importance. Modeling of batch experiments and breakthrough curves, BTC, supplies relevant information in this regard. We present the static batch results of Freundlich isotherms testing CdCl<jats:sub>2</jats:sub> aqueous solutions equilibria with sandy loam sediments, along with column-data processed by the dynamic codes CfitM and CfitIM under saturated water flow conditions. Three Cd-concentrations (5, 20, and 40 ppm) were employed to investigate the conjunction of using two procedures for obtaining the pertinent parameters for the transport of such a heavy metal and the design of the adequate Cd-trap. The results showed the deviations of the two techniques due to differences in their theoretical concepts, mathematical formulation, and performance. The batch method showed utility in supplying first guesses for the retardation factor, R, to insert into the 4-parameter analytical code, CfitIM, applied for column BTC modeling. The iteratively-obtained-parameters of the Freundlich equation were then employed to generate the distribution coefficient, <jats:italic>k </jats:italic><jats:sub>d</jats:sub>. The generated value was, in turn, used to get more fair guess for the retardation factor, R, to use as a fixed-value in the CfitIM code to get an in-depth insight into the BTC dynamics and to obtain the other pertinent model parameters. The BTC runs indicated that the concentration controls the distinctive adsorption and transport rate and behavior of the heavy metal in the sediment column. The most dilute solution offered the highest Cd impediment, as shown by the most significant values for the distribution coefficient, <jats:italic>k </jats:italic><jats:sub>d</jats:sub>, and retardation factor, R. The malfunction of the sediment as a trap appeared at Cd-concentrations four to eight folds higher than the most dilute solution. However, the loamy sand trap is successful when fed with a dilute aqueous solution. A set of successive traps is to arrange in tandem lines when moderate to high concentration is to discharge from an industrial workshop. The results emphasize the utility of the mutual use of these two lab procedures for the design of adequate traps and landfills and the simulation of more complex situations in the field. The point-pollution control needs to continue running batch and BTC experiments and to carry out their corresponding modeling.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • simulation