Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ostergaard, Halsey

  • Google
  • 1
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Characterisation of materials properties and defects in structure fabricated via additive friction stir depositioncitations

Places of action

Chart of shared publication
Bhagavath, Shishira
1 / 4 shared
Yakubov, Vladislav
1 / 1 shared
Hughes, James
1 / 4 shared
Khezri, Mani
1 / 1 shared
Paradowska, Anna Maria
1 / 2 shared
Löschke, Sandra
1 / 1 shared
Yasa, Evren
1 / 24 shared
Li, Qing
1 / 7 shared
Leung, Chu Lun Alex
1 / 10 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Bhagavath, Shishira
  • Yakubov, Vladislav
  • Hughes, James
  • Khezri, Mani
  • Paradowska, Anna Maria
  • Löschke, Sandra
  • Yasa, Evren
  • Li, Qing
  • Leung, Chu Lun Alex
OrganizationsLocationPeople

document

Characterisation of materials properties and defects in structure fabricated via additive friction stir deposition

  • Ostergaard, Halsey
  • Bhagavath, Shishira
  • Yakubov, Vladislav
  • Hughes, James
  • Khezri, Mani
  • Paradowska, Anna Maria
  • Löschke, Sandra
  • Yasa, Evren
  • Li, Qing
  • Leung, Chu Lun Alex
Abstract

<title>Abstract</title><p>Additive friction stir deposition (AFSD) is an emerging solid-state non-fusion additive manufacturing (AM) technology, which produces parts with wrought-like material properties, high deposition rates, and low residual stresses. However, impact of process interruption on defect formation and mechanical properties has not yet been well-addressed in literature. In this study, Al6061 aluminium structure with two final heights and deposition interruption is successfully manufactured via AFSD and characterised. Defect analysis conducted via optical microscopy, electron microscopy, and X-ray computed tomography reveals &gt;99% relative density with minimal defects in centre of the parts. However, tunnel defects at interface between substrate and deposit as well as kissing bonds are present. Edge of deposit contains tunnel defects due to preference for greater material deposition on advancing side of rotating tool. Virtual machining highlights the ability to remove defects via post processing, avoiding mechanical performance impact of stress concentrating pores. Electron back scatter diffraction revealed regions with localised shear bands contain 1-5 µm equivalent circular diameter grains. Kissing bonds exhibit in areas separated by large grain size difference. Meanwhile, Vickers hardness testing reveals hardness variation with deposit height.This work advances the understanding of complex microstructure development, material flow, and mechanical behaviour of AFSD Al6061 alloy.</p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • pore
  • grain
  • grain size
  • tomography
  • aluminium
  • hardness
  • electron microscopy
  • optical microscopy
  • additive manufacturing
  • hardness testing
  • concentrating