Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Prather, Andy

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Effects of a Modified Heat Treatment on the Quasi-Static and Dynamic Behavior of Additively Manufactured Lattice Structurescitations

Places of action

Chart of shared publication
Davami, Keivan
1 / 6 shared
Palazotto, Anthony N.
1 / 1 shared
Almeida, Nara
1 / 1 shared
Rowe, Russell
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Davami, Keivan
  • Palazotto, Anthony N.
  • Almeida, Nara
  • Rowe, Russell
OrganizationsLocationPeople

document

Effects of a Modified Heat Treatment on the Quasi-Static and Dynamic Behavior of Additively Manufactured Lattice Structures

  • Davami, Keivan
  • Palazotto, Anthony N.
  • Almeida, Nara
  • Rowe, Russell
  • Prather, Andy
Abstract

<jats:title>Abstract</jats:title><jats:p>The flexibility of additive manufacturing techniques that produce parts from powders layer-by-layer directly from a digital model, enabled the fabrication of complex lightweight lattice structures with precisely engineered mechanical properties. Herein, an investigation of the quasi-static and dynamic behavior of additively manufactured (AM) triply periodic minimal surface (TPMS) lattice structures before and after a novel post-process heat treatment step is conducted. The specimens were fabricated out of Inconel 718, a nickel-chromium-based superalloy, using a selective laser melting technique with three different topologies, namely, Gyroid, Primitive, and I-WP. The quasi-static tests were conducted at a strain rate of 0.002 s<jats:sup>− 1</jats:sup> and dynamic experiments were conducted using a split Hopkinson pressure bar at three different strain rates, 600 s<jats:sup>− 1</jats:sup>, 800 s<jats:sup>− 1</jats:sup>, and 1000 s<jats:sup>− 1</jats:sup>. It was shown that while the strain rate does not significantly affect the mechanical responses of the lattice structures, the heat treatment step dramatically changes their behavior. Results demonstrated that after the heat treatment, the yield strength of the I-WP specimens increased by 65.2% under a quasi-static load. Also, flow stress after yielding in the dynamic tests was shown to increase around 9.6% for I-WP specimens and up to 12.8% for Gyroid specimens. The specific energy absorption values were 10.5, 19.1, and 10.7 for I-WP, Gyroid, and Primitive, respectively, before the heat treatment, and changed to 19.6, 19.8, and 15.4 after the heat treatment. The results confirm that by precisely designing the architecture of a lattice structure and implementing a modified heat treatment process, it is possible to optimize the weight, strength, and energy absorption capability of this type of metamaterial.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • nickel
  • chromium
  • experiment
  • strength
  • selective laser melting
  • yield strength
  • metamaterial
  • superalloy
  • gyroid