Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhaskaran, Harish

  • Google
  • 5
  • 27
  • 981

University of Oxford

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Probabilistic Photonic Computing with Chaotic Lightcitations
  • 2019A Nonvolatile Phase‐Change Metamaterial Color Display111citations
  • 2016Design of practicable phase-change metadevices for near-infrared absorber and modulator applications87citations
  • 2016The design of practicable phase-change metadevices for near-infrared absorber and modulator applications87citations
  • 2014An optoelectronic framework enabled by low-dimensional phase-change films.696citations

Places of action

Chart of shared publication
Borras, Hendrik Walter Heinz
1 / 1 shared
Risse, Benjamin
1 / 1 shared
Fröning, Holger
1 / 1 shared
Wright, C. David
4 / 8 shared
Pernice, Wolfram
1 / 2 shared
Klein, Bernhard
1 / 1 shared
Brückerhoff-Plückelmann, Frank
1 / 1 shared
Brückerhoff, Martin
1 / 1 shared
Dijkstra, Jelle
1 / 1 shared
Salinga, Martin
1 / 2 shared
Becker, Marlon
1 / 1 shared
Varri, Akhil
1 / 1 shared
Hosseini, Peiman
2 / 3 shared
Ríos, Carlos
1 / 1 shared
Rodriguezhernandez, Gerardo
1 / 1 shared
Nagareddy, V. Karthik
1 / 1 shared
Au, Yatyin
1 / 1 shared
Trimby, Liam
1 / 1 shared
Carrillo, Santiago Garcíacuevas
1 / 1 shared
Carrillo, Santiago García Cuevas
1 / 1 shared
Cryan, Martin J.
2 / 5 shared
Hayat, Hasan
1 / 2 shared
Klemm, Maciej
2 / 7 shared
Nash, Geoffrey R.
2 / 2 shared
Wright, Cd
1 / 7 shared
Carrillo, Santiago García-Cuevas
1 / 1 shared
Hayat, Hh
1 / 1 shared
Chart of publication period
2024
2019
2016
2014

Co-Authors (by relevance)

  • Borras, Hendrik Walter Heinz
  • Risse, Benjamin
  • Fröning, Holger
  • Wright, C. David
  • Pernice, Wolfram
  • Klein, Bernhard
  • Brückerhoff-Plückelmann, Frank
  • Brückerhoff, Martin
  • Dijkstra, Jelle
  • Salinga, Martin
  • Becker, Marlon
  • Varri, Akhil
  • Hosseini, Peiman
  • Ríos, Carlos
  • Rodriguezhernandez, Gerardo
  • Nagareddy, V. Karthik
  • Au, Yatyin
  • Trimby, Liam
  • Carrillo, Santiago Garcíacuevas
  • Carrillo, Santiago García Cuevas
  • Cryan, Martin J.
  • Hayat, Hasan
  • Klemm, Maciej
  • Nash, Geoffrey R.
  • Wright, Cd
  • Carrillo, Santiago García-Cuevas
  • Hayat, Hh
OrganizationsLocationPeople

document

Probabilistic Photonic Computing with Chaotic Light

  • Borras, Hendrik Walter Heinz
  • Risse, Benjamin
  • Fröning, Holger
  • Wright, C. David
  • Pernice, Wolfram
  • Klein, Bernhard
  • Brückerhoff-Plückelmann, Frank
  • Bhaskaran, Harish
  • Brückerhoff, Martin
  • Dijkstra, Jelle
  • Salinga, Martin
  • Becker, Marlon
  • Varri, Akhil
Abstract

iological neural networks effortlessly tackle complex computational problems and excel at predicting outcomes from noisy, incomplete data, a task that poses significant challenges to traditional processors. Artificial neural networks (ANNs), inspired by these biological counterparts, have emerged as powerful tools for deciphering intricate data patterns and making predictions. However, conventional ANNs can be viewed as "point estimates" that do not capture the uncertainty of prediction, which is an inherently probabilistic process. In contrast, treating an ANN as a probabilistic model derived via Bayesian inference poses significant challenges for conventional deterministic computing architectures. Here, we use chaotic light in combination with incoherent photonic data processing to enable high-speed probabilistic computation and uncertainty quantification.Since both the chaotic light source and the photonic crossbar support multiple independent computational wavelength channels, we sample from the output distributions in parallel at a sampling rate of 70.4 GS/s, limited only by the electronic interface. We exploit the photonic probabilistic architecture to simultaneously perform image classification and uncertainty prediction via a Bayesian neural network. Our prototype demonstrates the seamless cointegration of a physical entropy source and a computational architecture that enables ultrafast probabilistic computation by parallel sampling.

Topics
  • impedance spectroscopy