Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yam, F. K.

  • Google
  • 1
  • 8
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Considerations About the Determination of Optical Bandgap from Diffuse Reflectance Spectroscopy Using the Tauc Plot16citations

Places of action

Chart of shared publication
Chahrour, Khaled M.
1 / 2 shared
Landi, S.
1 / 6 shared
Jubu, Peverga R.
1 / 2 shared
Obaseki, O. S.
1 / 1 shared
Gundu, A. A.
1 / 1 shared
Muhammad, A.
1 / 3 shared
Igbawua, T.
1 / 1 shared
Chahul, H. F.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Chahrour, Khaled M.
  • Landi, S.
  • Jubu, Peverga R.
  • Obaseki, O. S.
  • Gundu, A. A.
  • Muhammad, A.
  • Igbawua, T.
  • Chahul, H. F.
OrganizationsLocationPeople

document

Considerations About the Determination of Optical Bandgap from Diffuse Reflectance Spectroscopy Using the Tauc Plot

  • Chahrour, Khaled M.
  • Landi, S.
  • Jubu, Peverga R.
  • Obaseki, O. S.
  • Gundu, A. A.
  • Muhammad, A.
  • Igbawua, T.
  • Yam, F. K.
  • Chahul, H. F.
Abstract

<jats:title>Abstract</jats:title><jats:p>The optical diffuse reflectance data of a semiconductor material is usually converted into the Kubelka–Munk function before proceeding to process the conventional Tauc’s plot from which optical bandgap energy can be determined. Firstly, it is conventional/ customary to convert the percentage reflectance (<jats:italic>R</jats:italic><jats:sub>∞</jats:sub>(%)) data which is obtained from UV-vis measurement into an equivalent reflectance (<jats:italic>R</jats:italic><jats:sub>∞</jats:sub>) that range between 0 and 1 before processing the Tauc’s plot. Secondly, the Kubelka–Munk function is usually multiplied by the incident photon energy, <jats:italic>hv</jats:italic>, to produce an all-elements/ comprehensive Tauc’s plot. Literature is scarce to convincingly demonstrate that a correct bandgap value can also be obtained from the Tauc’s plot that is derived directly from the (<jats:italic>R</jats:italic><jats:sub>∞</jats:sub>(%)) data without having to convert to <jats:italic>R</jats:italic><jats:sub>∞</jats:sub>. Also, publication is rarely available to demonstrate that a correct bandgap value can be determined without having to multiply the Kubelka–Munk function by <jats:italic>hv</jats:italic>. Investigation shows diminutive differences in the bandgap values estimated from the <jats:italic>R</jats:italic><jats:sub>∞</jats:sub>(%)-based Tauc’s plots and the equivalent <jats:italic>R</jats:italic><jats:sub>∞</jats:sub>-based Tauc’s plots. This suggests that either of the methods can be employed for a proper bandgap estimate. Additionally, a comparison between the magnitude of the bandgap energies determined from the comprehensive Tauc’s plot and when the Kubelka–Munk function is not multiplied by \(hv\) shows insignificant differences in the estimated values. This suggests that either of the two methods can be used to obtain a reliable bandgap for direct and indirect optical gap semiconductors.</jats:p>

Topics
  • impedance spectroscopy
  • semiconductor