Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kenzelmann, Michel

  • Google
  • 3
  • 32
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Giant Magnetic Anisotropy in the Atomically Thin van der Waals Antiferromagnet FePS330citations
  • 2023Spin-orbit control of antiferromagnetic domains without a Zeeman couplingcitations
  • 2023Spin-orbit control of antiferromagnetic domains without a Zeeman couplingcitations

Places of action

Chart of shared publication
Kang, Soonmin
1 / 1 shared
Kim, Chaebin
1 / 1 shared
Cheong, Hyeonsik
1 / 3 shared
Son, Suhan
1 / 1 shared
Lee, Youjin
1 / 1 shared
Parchenko, Sergii
1 / 3 shared
Kim, Wondong
1 / 1 shared
Choi, Kiyoung
1 / 1 shared
Kleibert, Armin
1 / 9 shared
Savchenko, Tatiana
1 / 2 shared
Derlet, Peter M.
1 / 7 shared
Delley, Bernard
1 / 1 shared
Shen, Junying
3 / 4 shared
Na, Woongki
1 / 1 shared
Lapertot, Gerard
1 / 1 shared
Niedermayer, Christof
2 / 2 shared
Gawryluk, Dariusz Jakub
1 / 5 shared
Yadav, Ruchika
2 / 2 shared
Raymond, Stephane
1 / 2 shared
Zolliker, Markus
2 / 2 shared
Ressouche, Eric
2 / 5 shared
Bartkowiak, Marek
2 / 6 shared
Sibille, Romain
2 / 10 shared
Mazzone, Daniel
2 / 2 shared
Maimone, Damaris Tartarotti
2 / 2 shared
Gauthier, Nicolas
2 / 14 shared
Pomjakushina, Ekaterina
1 / 16 shared
Gavilano, Jorge
2 / 3 shared
Raymond, Stéphane
1 / 4 shared
Pomajkushina, Ekaterina
1 / 1 shared
Gawryluk, Dariusz
1 / 1 shared
Lapertot, Gérard
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kang, Soonmin
  • Kim, Chaebin
  • Cheong, Hyeonsik
  • Son, Suhan
  • Lee, Youjin
  • Parchenko, Sergii
  • Kim, Wondong
  • Choi, Kiyoung
  • Kleibert, Armin
  • Savchenko, Tatiana
  • Derlet, Peter M.
  • Delley, Bernard
  • Shen, Junying
  • Na, Woongki
  • Lapertot, Gerard
  • Niedermayer, Christof
  • Gawryluk, Dariusz Jakub
  • Yadav, Ruchika
  • Raymond, Stephane
  • Zolliker, Markus
  • Ressouche, Eric
  • Bartkowiak, Marek
  • Sibille, Romain
  • Mazzone, Daniel
  • Maimone, Damaris Tartarotti
  • Gauthier, Nicolas
  • Pomjakushina, Ekaterina
  • Gavilano, Jorge
  • Raymond, Stéphane
  • Pomajkushina, Ekaterina
  • Gawryluk, Dariusz
  • Lapertot, Gérard
OrganizationsLocationPeople

document

Spin-orbit control of antiferromagnetic domains without a Zeeman coupling

  • Lapertot, Gerard
  • Niedermayer, Christof
  • Gawryluk, Dariusz Jakub
  • Yadav, Ruchika
  • Raymond, Stephane
  • Zolliker, Markus
  • Ressouche, Eric
  • Bartkowiak, Marek
  • Kenzelmann, Michel
  • Sibille, Romain
  • Mazzone, Daniel
  • Maimone, Damaris Tartarotti
  • Gauthier, Nicolas
  • Pomjakushina, Ekaterina
  • Gavilano, Jorge
  • Shen, Junying
Abstract

<jats:title>Abstract</jats:title><jats:p>Encoding information in antiferromagnetic (AFM) domains is a promising solution for the ever growing demand in magnetic storage capacity. What fundamentally enables ultrahigh density AFM-based spintronics is the absence of unintentional crosstalk between different domain states due to vanishing stray fields [1]. However, the absence of macroscopic magnetization is detrimental to the manipulation and detection of AFM domains. Disentangling the merits and disadvantages of small stray fields seemed so far unattainable. In this work, we report evidence for a new AFM domain selection mechanism based on the anisotropy in the susceptibility not induced by Zeeman energy terms, but by the relative orientation of the external magnetic field to the two perpendicularly oriented k-domains only. As a result, the charge transport response is controlled by the rotation of the magnetic field. In particular, a pronounced new anisotropic magnetoresistance effect is found in the AFM phase of bulk materials Nd(1-x)Ce(x) CoIn(5), due to differences in transport scattering rates for currents applied parallel and perpendicular to the spin-density wave modulation. Our results and the domain switching theory [2] indicate that this constitutes a new universal effect across multiband materials and thus provide a novel mechanism to control and detect AFM domains opening new perspectives for AFM sprintronics.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • phase
  • theory
  • atomic force microscopy
  • anisotropic
  • susceptibility
  • magnetization