Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Catindig, Gerald Angelo

  • Google
  • 2
  • 10
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Terahertz Emission Increase in GaAs Films Exhibiting Structural Defects Grown on Si (100) Substrates Using a Two-Layered LTG-GaAs Buffer Systemcitations
  • 2021Terahertz emission increase in GaAs films exhibiting structural defects grown on Si (100) substrates using a two-layered LTG-GaAs buffer system1citations

Places of action

Chart of shared publication
Reyes Moreno, Alexander
1 / 1 shared
Salvador, Arnel
1 / 1 shared
Faustino, Maria Angela
1 / 1 shared
Somintac, Armando
1 / 1 shared
Husay, Horace Andrew
1 / 1 shared
Estacio, Elmer
1 / 1 shared
Vasquez, John Daniel
1 / 1 shared
Tumanguil-Quitoras, Mae Agatha
1 / 1 shared
Prieto, Elizabeth Ann
1 / 1 shared
Gonzales, Cedric
1 / 6 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Reyes Moreno, Alexander
  • Salvador, Arnel
  • Faustino, Maria Angela
  • Somintac, Armando
  • Husay, Horace Andrew
  • Estacio, Elmer
  • Vasquez, John Daniel
  • Tumanguil-Quitoras, Mae Agatha
  • Prieto, Elizabeth Ann
  • Gonzales, Cedric
OrganizationsLocationPeople

document

Terahertz Emission Increase in GaAs Films Exhibiting Structural Defects Grown on Si (100) Substrates Using a Two-Layered LTG-GaAs Buffer System

  • Catindig, Gerald Angelo
Abstract

<jats:title>Abstract</jats:title><jats:p>Terahertz (THz) emission increase is observed for GaAs thin films that exhibit structural defects. The GaAs epilayers are grown by molecular beam epitaxy on exactly oriented Si (100) substrates at three different temperatures (<jats:italic>T</jats:italic><jats:sub><jats:italic>s</jats:italic> </jats:sub>= 320ºC, 520ºC and 630ºC). The growth method involves the deposition of two low-temperature-grown (LTG)-GaAs buffers with subsequent in-situ thermal annealing at <jats:italic>T</jats:italic><jats:sub><jats:italic>s</jats:italic> </jats:sub>= 600ºC. Reflection high energy electron diffraction confirms the layer-by-layer growth mode of the GaAs on Si. X-ray diffraction shows the improvement in crystallinity as growth temperature is increased. The THz time-domain spectroscopy is performed in reflection and transmission excitation geometries. At <jats:italic>T</jats:italic><jats:sub><jats:italic>s</jats:italic> </jats:sub>= 320ºC, the low crystallinity of GaAs on Si makes it an inferior THz emitter in reflection geometry, over a GaAs grown at the same temperature on a semi-insulating GaAs substrate. However, in transmission geometry, the GaAs on Si exhibits less absorption losses. At higher <jats:italic>T</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>, the GaAs on Si thin films emerge as promising THz emitters despite the presence of antiphase boundaries and threading dislocations as identified from scanning electron microscopy and Raman spectroscopy. An intense THz emission in reflection and transmission excitation geometries is observed for the GaAs on Si grown at <jats:italic>T</jats:italic><jats:sub><jats:italic>s</jats:italic> </jats:sub>= 520ºC, suggesting the existence of an optimal growth temperature for GaAs on Si at which the THz emission is most efficient in both excitation geometries. The results are significant in the growth design and fabrication of GaAs on Si material system intended for future THz photoconductive antenna emitter devices.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • laser emission spectroscopy
  • layered
  • dislocation
  • annealing
  • Raman spectroscopy
  • crystallinity
  • high energy electron diffraction