Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kondepudi, Akhil

  • Google
  • 1
  • 23
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022AI-based molecular classification of diffuse gliomas using rapid, label-free optical imaging1citations

Places of action

Chart of shared publication
Al-Holou, Wajd
1 / 1 shared
Adapa, Arjun
1 / 1 shared
Sagher, Oren
1 / 1 shared
Heth, Jason
1 / 1 shared
Reinecke, David
1 / 1 shared
Widhalm, Georg
1 / 1 shared
Golfinos, John
1 / 1 shared
Aabedi, Alexander
1 / 1 shared
Von Spreckelsen, Niklas
1 / 1 shared
Berger, Mitchell
1 / 1 shared
Hervey-Jumper, Shawn
1 / 1 shared
Wadiura, Lisa I.
1 / 1 shared
Hollon, Todd
1 / 1 shared
Freudiger, Christian
1 / 1 shared
Lowenstein, Pedro
1 / 2 shared
Castro, Maria
1 / 3 shared
Lee, Honglak
1 / 1 shared
Snuderl, Matija
1 / 1 shared
Camelo-Piragua, Sandra
1 / 1 shared
Nasir-Moin, Mustafa
1 / 1 shared
Chowdury, Asadur
1 / 1 shared
Neuschmelting, Volker
1 / 1 shared
Jiang, Cheng
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Al-Holou, Wajd
  • Adapa, Arjun
  • Sagher, Oren
  • Heth, Jason
  • Reinecke, David
  • Widhalm, Georg
  • Golfinos, John
  • Aabedi, Alexander
  • Von Spreckelsen, Niklas
  • Berger, Mitchell
  • Hervey-Jumper, Shawn
  • Wadiura, Lisa I.
  • Hollon, Todd
  • Freudiger, Christian
  • Lowenstein, Pedro
  • Castro, Maria
  • Lee, Honglak
  • Snuderl, Matija
  • Camelo-Piragua, Sandra
  • Nasir-Moin, Mustafa
  • Chowdury, Asadur
  • Neuschmelting, Volker
  • Jiang, Cheng
OrganizationsLocationPeople

document

AI-based molecular classification of diffuse gliomas using rapid, label-free optical imaging

  • Al-Holou, Wajd
  • Adapa, Arjun
  • Kondepudi, Akhil
  • Sagher, Oren
  • Heth, Jason
  • Reinecke, David
  • Widhalm, Georg
  • Golfinos, John
  • Aabedi, Alexander
  • Von Spreckelsen, Niklas
  • Berger, Mitchell
  • Hervey-Jumper, Shawn
  • Wadiura, Lisa I.
  • Hollon, Todd
  • Freudiger, Christian
  • Lowenstein, Pedro
  • Castro, Maria
  • Lee, Honglak
  • Snuderl, Matija
  • Camelo-Piragua, Sandra
  • Nasir-Moin, Mustafa
  • Chowdury, Asadur
  • Neuschmelting, Volker
  • Jiang, Cheng
Abstract

<jats:title>Abstract</jats:title><jats:p>Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. However, timely molecular diagnostic testing for brain tumor patients is limited [1–3], complicating surgical and adjuvant treatment and obstructing clinical trial enrollment [4]. Here, we developed DeepGlioma, a rapid (&lt;90 seconds), AI-based diagnostic screening system to streamline the molecular diagnosis of diffuse gliomas. DeepGlioma is trained using a multimodal dataset that includes stimulated Raman histology (SRH), a rapid, label-free, non-consumptive, optical imaging method [5–7], and large-scale, public genomic data. In a prospective, multicenter, international testing cohort of diffuse glioma patients (N = 153) who underwent real-time SRH imaging, we demonstrate that DeepGlioma can predict the molecular alterations used by the World Health Organization (WHO) to define the adult-type diffuse glioma taxonomy (IDH mutation, 1p19q co-deletion, ATRX mutation) [8], achieving a mean molecular classification accuracy of 93.3 (±1.6)%. Our results represent how artificial intelligence and optical histology can be used to provide a rapid and scalable adjunct to wet lab methods for the molecular diagnosis of diffuse glioma patients.</jats:p>

Topics
  • impedance spectroscopy