Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Arnold, Dan

  • Google
  • 2
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Optimisation of Polymer Flooding in a Heterogeneous ReservoirConsidering Geological and History Matching Uncertaintiescitations
  • 2020Optimisation of polymer flooding in a heterogeneous reservoir considering geological and history matching uncertainties2citations

Places of action

Chart of shared publication
Ibiam, Emmanuel
2 / 3 shared
Geiger, Sebastian
2 / 5 shared
Demyanov, Vasily
2 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Ibiam, Emmanuel
  • Geiger, Sebastian
  • Demyanov, Vasily
OrganizationsLocationPeople

document

Optimisation of polymer flooding in a heterogeneous reservoir considering geological and history matching uncertainties

  • Ibiam, Emmanuel
  • Geiger, Sebastian
  • Arnold, Dan
  • Demyanov, Vasily
Abstract

<p>Polymer flooding offers the potential to recover more oil from reservoirs but requires significant investments which necessitate a robust analysis of economic upsides and downsides. Key uncertainties in designing a polymer flood are often reservoir geology and polymer degradation. The objective of this study is to understand the impact of geological uncertainties and history matching techniques on designing the optimal strategy and quantifying the economic risks of polymer flooding in a heterogeneous clastic reservoir. We applied two different history matching techniques (adjoint-based and a stochastic algorithm) to match data from a prolonged waterflood in the Watt Field, a semi-synthetic reservoir that contains a wide range of geological and interpretational uncertainties. An ensemble of reservoir models is available for the Watt Field, and history matching was carried out for the entire ensemble using both techniques. Next, sensitivity studies were carried out to identify first-order parameters that impact the Net Present Value (NPV). These parameters were then deployed in an experimental design study using a Latin Hypercube to generate training runs from which a proxy model was created. The proxy model was constructed using polynomial regression and validated using further full-physics simulations. A particle swarm optimisation algorithm was then used to optimize the NPV for the polymer flood. The same approach was used to optimise a standard water flood for comparison. Optimisations of the polymer flood and water flood were performed for the history matched model ensemble and the original ensemble. The sensitivity studies showed that polymer concentration, location of polymer injection wells and time to commence polymer injection are key to optimizing the polymer flood. The optimal strategy to deploy the polymer flood and maximize NPV varies based on the history matching technique. The average NPV is predicted to be higher in the stochastic history matching compared to the adjoint technique. The variance in NPV is also higher for the stochastic history matching technique. This is due to the ability of the stochastic algorithm to explore the parameter space more broadly, which created situations where the oil in place is shifted upwards, resulting in higher NPV. Optimizing a history matched ensemble leads to a narrow variance in absolute NPV compared to history matching the original ensemble. This is because the uncertainties associated with polymer degradation are not captured during history matching. The result of cross comparison, where an optimal polymer design strategy for one ensemble member is deployed to the other ensemble members, predicted a decline in NPV but surprisingly still shows that the overall NPV is higher than for an optimized water food. This indicates that a polymer flood could be beneficial compared to a water flood, even if geological uncertainties are not captured properly.</p>

Topics
  • impedance spectroscopy
  • polymer
  • simulation