Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wydiabhakti, Tety

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Utilizing Advanced Logs for Flow Unit Classification in Vertical Interference Test Modeling6citations

Places of action

Chart of shared publication
Kumar, Arvind
1 / 15 shared
Mishra, Siddhartha
1 / 1 shared
Singh, Suraj
1 / 1 shared
Gidwani, Arjit
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Kumar, Arvind
  • Mishra, Siddhartha
  • Singh, Suraj
  • Gidwani, Arjit
OrganizationsLocationPeople

document

Utilizing Advanced Logs for Flow Unit Classification in Vertical Interference Test Modeling

  • Kumar, Arvind
  • Mishra, Siddhartha
  • Singh, Suraj
  • Wydiabhakti, Tety
  • Gidwani, Arjit
Abstract

<jats:title>Abstract</jats:title><jats:p>Vertical Interference tests (VIT) are used to determine the hydraulic connectivity between the formation sand intervals. This paper showcases an innovative workflow of using the petrophysical log attributes to characterize a heterogeneous reservoir sand by making use of ANN (Artificial Neural Net) and SMLP (Stratigraphic Modified Lorentz) based rock typing techniques as well as image based advanced sand layer computation techniques.</jats:p><jats:p>Vertical interference test is either performed using a wireline formation testing tool with multiple flow probes deployed in a vertical sequence at desired depth points on the borehole wall or using a drill stem test configuration. Based on the test design, flow rates are changed using downhole pumps, which induces pressure transients in the formation. The measured pressure response is then compared with a numerical model to derive the reservoir parameters such as vertical permeability, hydraulic connectivity etc. The conventional way of model generation is to consider a section of reservoir sand as homogenous, which generally leads to over estimation or underestimation of vertical permeabilities. The technique proposed in this paper utilizes advanced logs such as image logs; magnetic resonance logs, water saturation and other advanced lithology logs to obey heterogeneity in the reservoir model by utilizing ANN/SMLP based rock-typing techniques. These rock types would be helpful in making a multi layer formation model for the VIT modeling and regression approach. The vertical interference test model is then used to determine the vertical permeability values for each of the individual rock types. The paper displays the workflow to utilize the rock type based layered formation model in vertical interference test modeling for a channel sand scenario.</jats:p>

Topics
  • impedance spectroscopy
  • layered
  • permeability