Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oort, Eric Van

  • Google
  • 1
  • 3
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Long-term Oil Well Zonal Isolation Control Using Geopolymers: An Analysis of Shrinkage Behavior17citations

Places of action

Chart of shared publication
Aldin, Munir
1 / 1 shared
Olvera, Raul
1 / 1 shared
Juenger, Maria
1 / 8 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Aldin, Munir
  • Olvera, Raul
  • Juenger, Maria
OrganizationsLocationPeople

document

Long-term Oil Well Zonal Isolation Control Using Geopolymers: An Analysis of Shrinkage Behavior

  • Oort, Eric Van
  • Aldin, Munir
  • Olvera, Raul
  • Juenger, Maria
Abstract

<jats:title>Abstract</jats:title><jats:p>Volume changes due to shrinkage are inherent to the hydration process of ordinary portland cement (OPC) and alkali-activated cementitious materials. Under elevated temperature and pressure conditions, as is the case in oil and gas wells, the internal stresses created by shrinkage can result in loss of zonal isolation and the need for expensive repairs.</jats:p><jats:p>This paper compares the early age shrinkage behavior of Class H OPC, alkali-activated Class F fly ash (referred to as geopolymer in this study), and geopolymer-hybrid (geopolymers incorporating drilling mud) slurries with up to 20% (by volume) synthetic based mud (SBM) contamination cured at 23°C and 50°C. In addition, the use of zinc and aluminum-based expansive agents to mitigate shrinkage was explored. Results from various test methods characterizing shrinkage behavior show that (a) shrinkage increases with temperature for all cases, (b) geopolymers shrink less than OPC slurries at low temperature, (c) geopolymer shrinkage exceeds that of OPC slurries at higher temperatures, (d) the addition of SBM increases the shrinkage of both OPC and geopolymer slurries, and (e) the use of suitable expansive agents has the potential to neutralize shrinkage of both OPC and geopolymer slurries. The work also shows that the current set of ASTM and API shrinkage tests need to be augmented with a test that can be conducted at elevated temperature and pressure, particularly when testing expansive agents that generate gases. A proposal for a more relevant test is included.</jats:p>

Topics
  • impedance spectroscopy
  • aluminium
  • zinc
  • laser emission spectroscopy
  • cement