Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abdullah, Hiwa

  • Google
  • 2
  • 9
  • 30

University of Göttingen

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Estimation of Capillary‐Associated NAPL‐Water Interfacial Areas for Unconsolidated Porous Media by Kinetic Interface Sensitive (KIS) Tracer Method6citations
  • 2018Impact of Sulphates Presence During Application of Smart Water Flooding Combined with Polymer Flooding24citations

Places of action

Chart of shared publication
Tatomir, Alexandru
1 / 1 shared
Pötzl, Christopher
1 / 1 shared
Sauter, Martin
1 / 1 shared
Helmig, Rainer
1 / 1 shared
Class, Holger
1 / 1 shared
Gao, Huhao
1 / 1 shared
Karadimitriou, Nikolaos
1 / 3 shared
Licha, Tobias
1 / 1 shared
Steeb, Holger
1 / 15 shared
Chart of publication period
2023
2018

Co-Authors (by relevance)

  • Tatomir, Alexandru
  • Pötzl, Christopher
  • Sauter, Martin
  • Helmig, Rainer
  • Class, Holger
  • Gao, Huhao
  • Karadimitriou, Nikolaos
  • Licha, Tobias
  • Steeb, Holger
OrganizationsLocationPeople

document

Impact of Sulphates Presence During Application of Smart Water Flooding Combined with Polymer Flooding

  • Abdullah, Hiwa
Abstract

<jats:title>Abstract</jats:title><jats:p>Oil recovery using Smart Water technology (SWF) can be maximized by optimizing the composition of injected water. Brine optimization is also believed to improve Polymer Flooding (PF) performance. The present study aims to assess and define the potential impact of combining Smart Water with Polymer Flooding, based on the sulphates presence in formation/injection water and rock composition. In this work, we study the impact of sulphates (sodium sulphates) on polymer viscoelasticity and its performance in porous media, based on oil recovery and pressure response.</jats:p><jats:p>Brine composition is optimized after having synthetic sea water (SSW) as a base brine. Brine optimization is performed by doubling the amount of sulphates, whilst diluting (in fresh water) the SSW-brine to a tenth of its initial concentration. Thus, four brines were utilized: 1) SSW (formation water), 2) SSW but double sulphates, 3) SSW/10 and 4) Brine 2/10. The workflow included core plugs aging prior core flooding. Secondary tertiary and quaternary mode experiments were performed to evaluate the feasibility of applying both processes.</jats:p><jats:p>The SSW-brine optimization (a tenth of its initial concentration) resulted in a salinity of 4.2 g/L which is in good agreement with previous studies (≤5 g/L), to guarantee additional oil recovery using SWF. Polymer rheological characterization was performed over wide range of shear rates and temperatures. Sodium sulphates showed increase in polymer viscosity as compare to sodium chloride or divalent cations. Enhancement in polymer linear viscoelasticity is observed with an increase in sulphate ions concentration. Furthermore, viscosity analysis over temperature has advocated to perform the core flood experiments at 45°C. Fluids were optimized/selected using a comprehensive rheological evaluation (ηoilηpolymer=2). Optimized Smart Water with higher amount of sulphates ions has shown additional oil recovery in both secondary and tertiary mode. Moreover, polymer injection in tertiary mode after smart water injection has shown significant additional oil recovery.</jats:p><jats:p>This study focuses on the influence of sulphates ions on SWF and PF performance for application in sandstone reservoirs. Previous studies have mainly focused the evaluation of sulphates ions impact only in carbonate reservoirs. It is of importance to further understand/clarify the effect of sulphates for field applications of SWF and PF combined. This in turn, could lead to improve the economics of project performance, by means of incremental oil and the less polymer required.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • polymer
  • experiment
  • laser emission spectroscopy
  • Sodium
  • viscosity
  • viscoelasticity
  • aging
  • aging