Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Graham, Alexander

  • Google
  • 2
  • 7
  • 58

Heriot-Watt University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Laboratory investigation of zinc and lead sulphide inhibition6citations
  • 2014The effect of pressure on the post-synthetic modification of a nanoporous metal-organic framework52citations

Places of action

Chart of shared publication
Al-Harbi, Bader G.
1 / 1 shared
Sorbie, Kenneth
1 / 5 shared
Mckellar, Scott C.
1 / 8 shared
Allan, David R.
1 / 8 shared
Moggach, Stephen A.
1 / 13 shared
Mohideen, M. Infas H.
1 / 1 shared
Morris, Russell E.
1 / 30 shared
Chart of publication period
2018
2014

Co-Authors (by relevance)

  • Al-Harbi, Bader G.
  • Sorbie, Kenneth
  • Mckellar, Scott C.
  • Allan, David R.
  • Moggach, Stephen A.
  • Mohideen, M. Infas H.
  • Morris, Russell E.
OrganizationsLocationPeople

document

Laboratory investigation of zinc and lead sulphide inhibition

  • Al-Harbi, Bader G.
  • Sorbie, Kenneth
  • Graham, Alexander
Abstract

<p>The formation of zinc sulphide (ZnS) and/or lead sulphide (PbS) has been a persistent problem, particularly in high temperature high pressure HT/HP fields. ZnS and PbS deposition can pose safety hazards and have serious economic consequences including reduction in well productivity and may require the implementation of an effective scale mitigation and removal strategy. HT/HP fields are prone to critical changes in temperature and pressure and, in addition, they usually have high salinity brines; indeed they are often referred to as HP/HT/HS systems. When these factors (pressue/temperature/salinity) vary together, they tend to trigger the formation of inorganic scales including sulphides. Apart from the role of temperature and salinity in scale formation, these (HT/HS) conditions often negatively impact scale inhibitor performance due to chemical degradation or incompatibility. The objective of this study was to investigate ZnS and PbS formation (as single or combined scales) and inhibition over a range of parameters including pH, temperature, salinity, time and initial Zn, Pb and H2S concentrations. Polymeric and phosphonate scale inhibitors (SIs) were tested using static scale formation experiments, with samples being analysed by inductively coupled plasma (ICP) analysis, Environmental Scanning Electron Microscopy (ESEM), pH and particle size distribution measurements. Of the seven scale inhibitors tested, only two demonstrated inhibitory capacity at active concentrations of 100 ppm or below. SI-2, a high-molecular weight polymer, was remarkably effective in preventing both zinc and lead sulphide deposition regardless of the final supernatant pH. SI-3 showed more limited efficacy compared with SI-2 with its highest inhibition being achieved at low pH values.This information is important to consider when designing scale inhibitor treatments; as carbon dioxide liberates from produced water due to decreasing pressureit causes the pH to increase, which may cause a drop in the inhibition efficiency of some scale inhibitors. Increasing the brine salinity had a detrimental impact on the performance of the tested scale inhibitors. Neither SI-2 nor SI-3 were able to prevent PbS deposition by ionic displacement of Zn from ZnS by Pb<sup>2+</sup> despite the fact that both scale inhibitors were effective against PbS under the same conditions using the conventional scale inhibition experiments. The particle size distribution of the partially inhibited ZnS and PbS particulates was found to be dependent on the type and concentration of the scale inhibitor, the final pH and salinity. The difference in particle size could have significant effects on in-line filter blocking tests and produced water quality issues.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • polymer
  • Carbon
  • experiment
  • zinc
  • molecular weight
  • environmental scanning electron microscopy
  • pH value