Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mccall, Matthew

  • Google
  • 2
  • 8
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Development of New Laboratory Test Methods for Measuring Top of the Line Corrosion and Assessing Corrosion Inhibitor Performance5citations
  • 2014Corrosion Inhibitors Squeeze Treatments-Misconceptions, Concepts and Potential Benefits2citations

Places of action

Chart of shared publication
Thomson, Hunter
1 / 4 shared
Graham, Gordon M.
2 / 9 shared
Ray, John
1 / 2 shared
Simpson, Caroline M.
1 / 3 shared
Stephens, Amy
1 / 1 shared
Frigo, Dario M.
1 / 3 shared
Bowering, Deborah
1 / 3 shared
Mackinnon, Kirsty
1 / 1 shared
Chart of publication period
2016
2014

Co-Authors (by relevance)

  • Thomson, Hunter
  • Graham, Gordon M.
  • Ray, John
  • Simpson, Caroline M.
  • Stephens, Amy
  • Frigo, Dario M.
  • Bowering, Deborah
  • Mackinnon, Kirsty
OrganizationsLocationPeople

document

Development of New Laboratory Test Methods for Measuring Top of the Line Corrosion and Assessing Corrosion Inhibitor Performance

  • Thomson, Hunter
  • Graham, Gordon M.
  • Ray, John
  • Simpson, Caroline M.
  • Stephens, Amy
  • Mccall, Matthew
  • Frigo, Dario M.
Abstract

<jats:title>Abstract</jats:title><jats:p>Top of the line (TOL) corrosion presents a major challenge for many oil and gas operating companies, especially those producing or exporting gas. It is known to occur during multiphase flow, such as transport of wet gas, as a result of water vapour condensing on the upper, internal surfaces of the pipe which may not be protected by conventional corrosion inhibitors. The dissolution of corrosive gases present in the gas stream (mainly CO2 and/or H2S) into the condensed water can result in severe general or localised corrosion. The design and testing of inhibitors to protect against TOL corrosion is a key area of development, and as yet no industry standard test methodology is available for measuring TOL corrosion and assessing inhibitor performance under these conditions.</jats:p><jats:p>In order to combat TOL corrosion, effective inhibitors are required to possess two somewhat contradictory properties: namely, to establish stable films on the steel surface while also possessing sufficient volatility to be transported to all locations where protection is required. Recently, we have developed a laboratory test method involving a relatively rapid screening stage followed by testing at more field-representative conditions, to determine TOL corrosion rates as well as to qualify the effectiveness of corrosion inhibitors designed to provide effective control against both TOL and bottom of the line (BOL) corrosion.</jats:p><jats:p>The method, which includes techniques for ambient-pressure testing as well as alternative techniques for elevated pressures, has been shown to reliably determine the effectiveness of TOL corrosion inhibitor formulations. Both approaches have been validated by comparison with field cases.</jats:p><jats:p>The application of this test methodology is already providing improved inhibitor selection for TOL corrosion, complementary to more standard test methods for inhibitor selection for BOL corrosion.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • steel