Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mors, Renee

  • Google
  • 2
  • 10
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019On The Role Of Soft Inclusions On The Fracture Behaviour Of Cement Paste2citations
  • 2017Effect on Concrete Surface Water Absorption upon Addition of Lactate Derived Agent29citations

Places of action

Chart of shared publication
Figueiredo, Stefan Chaves
1 / 22 shared
Schlangen, Erik
1 / 452 shared
Šavija, Branko
1 / 88 shared
Rossi, Emanuele
1 / 13 shared
Xu, Yading
1 / 12 shared
Mercuri, L.
1 / 3 shared
Antonaci, P.
1 / 6 shared
Romero Rodriguez, Claudia
1 / 17 shared
Anglani, G.
1 / 4 shared
Jonkers, Henk
1 / 37 shared
Chart of publication period
2019
2017

Co-Authors (by relevance)

  • Figueiredo, Stefan Chaves
  • Schlangen, Erik
  • Šavija, Branko
  • Rossi, Emanuele
  • Xu, Yading
  • Mercuri, L.
  • Antonaci, P.
  • Romero Rodriguez, Claudia
  • Anglani, G.
  • Jonkers, Henk
OrganizationsLocationPeople

document

On The Role Of Soft Inclusions On The Fracture Behaviour Of Cement Paste

  • Figueiredo, Stefan Chaves
  • Schlangen, Erik
  • Šavija, Branko
  • Rossi, Emanuele
  • Xu, Yading
  • Mercuri, L.
  • Antonaci, P.
  • Romero Rodriguez, Claudia
  • Mors, Renee
  • Anglani, G.
Abstract

Soft inclusions, such as capsules and other particulate admixtures are increasingly being used in cementitious materials for functional purposes (i.e. self-healing and self-sensing of concrete). Yet, their influence on the fracture behaviour of the material is sometimes overlooked and requires in-depth study for the optimization of mechanical and/or smart properties. An experimental investigation is presented herein on the role of bacteria-based lactate-derived particles on the fracture behaviour of cement paste in tensile configuration. These admixtures are currently used for the purpose of self-healing. Digital Image Correlation was used to obtain strain contours on the surface of the samples during the test. The influence of soft particles addition and age of the samples on the fracture mechanics of the composite were investigated.

Topics
  • impedance spectroscopy
  • surface
  • inclusion
  • composite
  • cement