People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
França De Mendonça Filho, F.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024An analytical equation to predict mortar spalling at laboratory scalecitations
- 2024An analytical equation to predict mortar spalling at laboratory scalecitations
- 2023Non-destructive screening methodology based on handheld XRF for the classification of concretecitations
- 2022Surface effects of molten slag spills on calcium aluminate cement pastecitations
- 2022Nano-modification in digital manufacturing of cementitious compositescitations
- 2021Thermal, optical and mechanical properties of new glass compositions containing fly ash
- 2021Thermal, optical and mechanical properties of new glass compositions containing fly ash
- 2021Characterization of air-void systems in 3D printed cementitious materials using optical image scanning and X-ray computed tomographycitations
- 2021Characterization of air-void systems in 3D printed cementitious materials using optical image scanning and X-ray computed tomographycitations
- 2020X-Ray Micro Tomography of Water Absorption by Superabsorbent Polymers in Mortarcitations
- 2020Fundamental investigation on the frost resistance of mortar with microencapsulated phase change materialscitations
- 2020Fundamental investigation on the frost resistance of mortar with microencapsulated phase change materialscitations
- 2019Re-curing of calcium aluminate cements post contact with molten slag
- 2019Frost Damage Progression Studied Through X-Ray tomography In Mortar With Phase Change Materials
- 2019Frost Damage Progression Studied Through X-Ray tomography In Mortar With Phase Change Materials
- 2018Mechanical properties of ductile cementitious composites incorporating microencapsulated phase change materialscitations
- 2017Development of ductile cementitious composites incorporating microencapsulated phase change materialscitations
- 2017Development of ductile cementitious composites incorporating microencapsulated phase change materialscitations
- 2017Dealing with uncertainty in material characterization of concrete by education
- 2015Semi- and full quantitative EDS microanalysis of chlorine in reinforced mortars subjected to chloride ingress and carbonation
Places of action
Organizations | Location | People |
---|
document
Frost Damage Progression Studied Through X-Ray tomography In Mortar With Phase Change Materials
Abstract
The potential of using phase change materials (PCM) in cementitious materials to mitigate damage due to thermal loadings has been recently focus of intensive research.In the case of PCM with transition temperatures near to the freezing point of water, their potential to delay frost in a cementitious matrix has been largely investigated through the monitoring of internal temperature changes when exposed to repeated cycles of subzero and ambient temperature. Yet, the effect of these admixtures to prevent damage in cement-based materials has not been directly studied. In this paper,mortars cylinders of two different sizes and containing 0, 10 and 30%of PCM replacement by volume of aggregates were subjected to frost salt scaling during freeze and thaw cycles. Prior to the start of the weathering and after cycles 1, 3, 7 and 15 the cylindrical specimens were subjected to X-ray microtomography to monitor morphological changes due to frost action, such as chipping and cracks. Compressive and flexural strength, coefficient of thermal expansion and apparent porosity of the undamaged composites were also investigated.Results suggest that the improvement of frost scaling resistance of the mortars with incorporated PCM is a trade-off between resulting mechanical proper-ties, thermal volume stability and porosity of the composite, as evinced from the better performance of mortars with 10%of PCM replacement.