People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sluys, Bert
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Geometric effects on impact mitigation in architected auxetic metamaterialscitations
- 2024Modeling of progressive high-cycle fatigue in composite laminates accounting for local stress ratioscitations
- 2023A numerical framework for simulating progressive failure in composite laminates under high-cycle fatigue loadingcitations
- 2022Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method.citations
- 2022Modelling of capillary water absorption in sound and cracked concrete using a dual-lattice approachcitations
- 2022Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method. Part IIcitations
- 2021Calcium phosphate cement reinforced with poly (vinyl alcohol) fiberscitations
- 2021A cohesive XFEM model for simulating fatigue crack growth under various load conditionscitations
- 2020A thermo-hydro-mechanical model for energy piles under cyclic thermal loadingcitations
- 2020An experimental and numerical investigation of sphere impact on alumina ceramiccitations
- 2019A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced compositescitations
- 2019Simulating brittle and ductile response of alumina ceramics under dynamic loadingcitations
- 2019Dynamic characterization of adobe in compressioncitations
- 2019A dispersive homogenization model for composites and its RVE existencecitations
- 2019A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloadingcitations
- 2019Efficient micromechanical analysis of fiber-reinforced composites subjected to cyclic loading through time homogenization and reduced-order modelingcitations
- 2019Dynamic simulation of masonry materials at different loading velocities using an updated damage delay algorithm of regularization
- 2018Cohesive zone and interfacial thick level set modeling of the dynamic double cantilever beam test of composite laminatecitations
- 2018Deformation to fracture evolution of a flexible polymer under split Hopkinson pressure bar loadingcitations
- 2018A viscosity regularized plasticity model for ceramicscitations
- 2017Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine bladescitations
- 2017Thick-level-set modeling of the dynamic double cantilever beam test
- 2017A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage modelcitations
- 2017On the modelling of mixed-mode discrete fracturecitations
- 2017Combined experimental/numerical investigation of directional moisture diffusion in glass/epoxy compositescitations
- 2016Simulation of dynamic behavior of quasi-brittle materials with new rate dependent damage modelcitations
- 2016Compressive response of multiple-particles-polymer systems at various strain ratescitations
Places of action
Organizations | Location | People |
---|
document
Dynamic characterization of adobe in compression
Abstract
Adobe is one of the most ancient forms of masonry. Adobe bricks are sundried mixtures of clay, silt, sand and natural fibres locally available joined together using mud mortar. Adobe structures are largely spread in areas of the world prone to earthquakes or involved in military conflicts. Unfortunately, almost no literature concerns the dynamic assessment of soil-based masonry components. From earlier research, it was derived that the mechanical behaviour of adobe in statics fits in the class of quasi brittle materials. Its resemblance with cementitious materials concerns the main failure modes and the constitutive models in compression. This study deals with the experimental characterization of adobe components response in dynamics. It is aimed to study and quantify the rate sensitivity of adobe material from bricks at a wide range of strain rates, from statics up to impact conditions. In particular, the influence of fiber reinforcement in the mixture on the mechanical behaviour of the material has been addressed. Adobe bricks are commonly mixed using organic content locally available in the field, from straw to chopped wood. Fibres are added to prevent shrinkage cracks during the air drying process. In modern materials such as concrete, inclusion of artificial fibres is originally meant to enhance the mechanical performance of the material, benefiting from the selective properties of reinforcement and binder. An experimental campaign was carried out in a collaboration between Delft University of Technology, Dutch Ministry of Defence, TNO and the Joint Research Centre (JRC) of the European Commission. Two types of bricks were tested. They both had the same soil composition in terms of mineralogical family and soil elements proportions but only one was mixed using straw and wood. Cylindrical samples were subjected to compression tests at different rates of loadings in compression: low ( _ 1 = 3 10􀀀4 s􀀀1), intermediate ( _ 2 = 3 s􀀀1) and high ( _ 3 = 120 s􀀀1). High strain rate tests were performed using the split Hopkinson bar of the Elsa-HopLab (JRC). For each test, high resolution videos registered the failure process and force-displacement plots were recorded. Elaboration of results revealed clear trends in the dynamic material behaviour. Adobe, as concrete, is sensitive to the loading rate. The rate effects on the main properties of the material in strength and deformation are also analytically and numerically quantified. Rate sensitivity and failure mode are significantly influenced by the inclusion of fibers in the mixture. These effects are quantified, interpreted and compared with modern SFRC. This paper presents the experimental campaign and the obtained results. Moreover, physical interpretations for the observed trends are discussed. Finally, new formulations for the assessment of the dynamic increase factor of the compressive strength of adobe are proposed.