Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Matsumi, Noriyoshi

  • Google
  • 2
  • 11
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Continuous Hydrothermal Synthesis of Metal Germanates (M<sub>2</sub>GeO<sub>4</sub> ; M = Co, Mn, Zn) for High Capacity Negative Electrodes in Li‐ion Batteries10citations
  • 2018TiO2/MoO2 nanocomposite as anode materials for high power Li-ion batteries with exceptional capacity7citations

Places of action

Chart of shared publication
Darr, Jawwad A.
2 / 9 shared
Dey, Dr. Avishek
1 / 6 shared
Bauer, Dustin
2 / 2 shared
Krishnamurthy, Professor Satheesh
1 / 24 shared
Groves, Alexandra R.
1 / 3 shared
Ashton, Thomas E.
1 / 4 shared
Roberts, Alexander
1 / 6 shared
Vedarajan, Raman
1 / 1 shared
Brett, Djl
1 / 51 shared
Starkey, Cl
1 / 1 shared
Shearing, Pr
1 / 48 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Darr, Jawwad A.
  • Dey, Dr. Avishek
  • Bauer, Dustin
  • Krishnamurthy, Professor Satheesh
  • Groves, Alexandra R.
  • Ashton, Thomas E.
  • Roberts, Alexander
  • Vedarajan, Raman
  • Brett, Djl
  • Starkey, Cl
  • Shearing, Pr
OrganizationsLocationPeople

article

TiO2/MoO2 nanocomposite as anode materials for high power Li-ion batteries with exceptional capacity

  • Roberts, Alexander
  • Vedarajan, Raman
  • Darr, Jawwad A.
  • Brett, Djl
  • Matsumi, Noriyoshi
  • Bauer, Dustin
  • Starkey, Cl
  • Shearing, Pr
Abstract

Nanoparticles of molybdenum(IV) oxide (MoO2) and a TiO2/MoO(2)nanocomposite were synthesised via a continuous hydrothermal synthesisprocess. Both powders were analysed using XRD, XPS, TEM, and BET andevaluated as active materials in anodes for Li-ion half-cells. Cyclicvoltammetry and galvanostatic charge/discharge measurements were carriedout in the potential window of 0.1 to 3.0 V vs. Li/Li+. Specificcapacities of ca. 350 mAh g(-1) were obtained for both materials at lowspecific currents (0.1 A g(-1)); TiO2/MoO(2 )composite electrodes showedsuperior rate behaviour &amp; stability under cycling (compared to MoO2),with stable specific capacities of ca. 265 mAh g(-1) at a specificcurrent of 0.5 A g(-1) and ca. 150 mAh g(-1) after 350 cycles at aspecific current of 2.5 A g(-1). The improved performance of thecomposite material, compared to MoO2, was attributed to a smallerparticle size, improved stability to volume changes (during cycling),and lower charge transfer resistance during cycling. Li-ion hybridelectrochemical capacitors using TiO2/MoO2 composite anodes andactivated carbon (AC) cathodes were evaluated and showed excellentperformance with an energy density of 44 Wh kg(-1) at a power density of600 W kg(-1).

Topics
  • nanoparticle
  • nanocomposite
  • density
  • molybdenum
  • Carbon
  • energy density
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • transmission electron microscopy
  • cyclic voltammetry